Home
Class 14
MATHS
If x = 1.1 then what is the value of...

If x = 1.1 then what is the value of ` sqrt(4x^2 - 4x+1)?`

A

1.21

B

1.331

C

2.21

D

1.2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{4x^2 - 4x + 1} \) when \( x = 1.1 \). ### Step-by-step Solution: 1. **Substitute the value of x**: \[ x = 1.1 \] We substitute this value into the expression: \[ \sqrt{4(1.1)^2 - 4(1.1) + 1} \] 2. **Calculate \( (1.1)^2 \)**: \[ (1.1)^2 = 1.21 \] Now substitute this back into the expression: \[ \sqrt{4(1.21) - 4(1.1) + 1} \] 3. **Multiply by 4**: \[ 4(1.21) = 4.84 \] Now the expression becomes: \[ \sqrt{4.84 - 4(1.1) + 1} \] 4. **Calculate \( 4(1.1) \)**: \[ 4(1.1) = 4.4 \] Substitute this value into the expression: \[ \sqrt{4.84 - 4.4 + 1} \] 5. **Simplify inside the square root**: \[ 4.84 - 4.4 = 0.44 \] Now add 1: \[ 0.44 + 1 = 1.44 \] So now we have: \[ \sqrt{1.44} \] 6. **Calculate the square root**: \[ \sqrt{1.44} = 1.2 \] Thus, the final answer is: \[ \boxed{1.2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 1 + sqrt(2) , then what is the value of x^4 - 4x^3 + 4x^2 ?

If 2x+(1)/(2x)=2 , then what is the value of sqrt(2((1)/(x))^(4)+((1)/(x))^(5)) ?