Home
Class 14
MATHS
If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt...

If `x=(sqrt(5)+1)/(sqrt(5)-1)` and `y=(sqrt(5)-1)/(sqrt(5)+1)`, then find the value of `(x^(2)-y^(2))`.

A

`sqrt5`

B

`2sqrt5`

C

`3sqrt5`

D

`4sqrt5`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)

If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1) find the value of x^(2)+y^(2)

Knowledge Check

  • If x=(sqrt(2)+1)/(sqrt(2)-1) and y=(sqrt(2)-1)/(sqrt(2)+1) , what is the value of (x+y) ?

    A
    `6`
    B
    `sqrt(2)`
    C
    `3`
    D
    `3sqrt(2)`
  • If x = ( sqrt5+ 1)/( sqrt 5 -1) and y (sqrt5 - 1)/( sqrt5 + 1), then value of (x ^(2) + xy + y ^(2))/( x ^(2) - xy + y ^(2))

    A
    `3/4`
    B
    `4/3`
    C
    `3/5`
    D
    `5/3`
  • Similar Questions

    Explore conceptually related problems

    If x=((sqrt(5)-2))/(sqrt(5)+2) and y=(sqrt(5)+2)/(sqrt(5)-2) find (i)

    (sqrt(5)-1)/(sqrt(5)+1)+(sqrt(5)+1)/(sqrt(5)-1)=a+b sqrt(5)

    If x=((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) and y=((sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))), find the value of (x^(2)+y^(2))

    If x=(sqrt5+sqrt2)/(sqrt5-sqrt2) and y=(sqrt5-sqrt2)/(sqrt5+sqrt2) then find the value of (3x-2y)(x+2y)

    If x=(sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)) and y=(sqrt(5)+sqrt(2))/(sqrt(5)-sqrt(2)), find the value of x^(2)-y^(2)

    (sqrt(5)-1)/(sqrt(5)+1)+(sqrt(5)+1)/(sqrt(5)-1) =a+b sqrt(5) Then find the value of a and b