Home
Class 14
MATHS
What is the simplified value of (sqrt5 +...

What is the simplified value of `(sqrt5 + sqrt4)/(sqrt5- sqrt4) + (sqrt5 - sqrt4)/(sqrt5 + sqrt4)` ?

A

9

B

10

C

18

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\sqrt{5} + \sqrt{4})/(\sqrt{5} - \sqrt{4}) + (\sqrt{5} - \sqrt{4})/(\sqrt{5} + \sqrt{4})\), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ \frac{\sqrt{5} + \sqrt{4}}{\sqrt{5} - \sqrt{4}} + \frac{\sqrt{5} - \sqrt{4}}{\sqrt{5} + \sqrt{4}} \] ### Step 2: Find a Common Denominator The common denominator for the two fractions is \((\sqrt{5} - \sqrt{4})(\sqrt{5} + \sqrt{4})\). Thus, we rewrite the expression: \[ \frac{(\sqrt{5} + \sqrt{4})^2 + (\sqrt{5} - \sqrt{4})^2}{(\sqrt{5} - \sqrt{4})(\sqrt{5} + \sqrt{4})} \] ### Step 3: Expand the Numerator Now we expand the numerator: \[ (\sqrt{5} + \sqrt{4})^2 = (\sqrt{5})^2 + 2\sqrt{5}\sqrt{4} + (\sqrt{4})^2 = 5 + 2 \cdot \sqrt{5} \cdot 2 + 4 = 5 + 4 + 4\sqrt{5} = 9 + 4\sqrt{5} \] \[ (\sqrt{5} - \sqrt{4})^2 = (\sqrt{5})^2 - 2\sqrt{5}\sqrt{4} + (\sqrt{4})^2 = 5 - 4 + 4\sqrt{5} = 1 - 4\sqrt{5} \] ### Step 4: Combine the Expanded Numerators Now we combine both parts: \[ (9 + 4\sqrt{5}) + (1 - 4\sqrt{5}) = 10 + 0 = 10 \] ### Step 5: Simplify the Denominator Now we simplify the denominator: \[ (\sqrt{5} - \sqrt{4})(\sqrt{5} + \sqrt{4}) = (\sqrt{5})^2 - (\sqrt{4})^2 = 5 - 4 = 1 \] ### Step 6: Final Expression Putting it all together, we have: \[ \frac{10}{1} = 10 \] ### Final Answer Thus, the simplified value of the expression is: \[ \boxed{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value (sqrt(5)-sqrt(3))/(sqrt(5) + sqrt(3)) - (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) ?

What is (sqrt5+sqrt3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) equal to

Simplify (sqrt5 - sqrt3)(sqrt5 + sqrt 3)

(4-sqrt5)/sqrt10

sqrt(5sqrt5(sqrt5(sqrt5)))

Show that (sqrt5+sqrt3)/(sqrt5-sqrt3)-(sqrt5-sqrt3)/(sqrt5+sqrt3)=2sqrt15