Home
Class 14
MATHS
Find the unit place digit in (82)^(102)+...

Find the unit place digit in `(82)^(102)+(183)^(103)`

A

1

B

6

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit place digit of \( (82)^{102} + (183)^{103} \), we can follow these steps: ### Step 1: Find the unit digit of \( (82)^{102} \) 1. **Identify the unit digit of the base**: The unit digit of \( 82 \) is \( 2 \). 2. **Determine the pattern of unit digits for powers of \( 2 \)**: - \( 2^1 = 2 \) (unit digit = 2) - \( 2^2 = 4 \) (unit digit = 4) - \( 2^3 = 8 \) (unit digit = 8) - \( 2^4 = 16 \) (unit digit = 6) - The pattern repeats every 4: \( 2, 4, 8, 6 \). 3. **Find the exponent modulo 4**: - \( 102 \mod 4 = 2 \) (since \( 102 = 4 \times 25 + 2 \)). 4. **Identify the unit digit from the pattern**: The 2nd position in the pattern \( 2, 4, 8, 6 \) is \( 4 \). ### Step 2: Find the unit digit of \( (183)^{103} \) 1. **Identify the unit digit of the base**: The unit digit of \( 183 \) is \( 3 \). 2. **Determine the pattern of unit digits for powers of \( 3 \)**: - \( 3^1 = 3 \) (unit digit = 3) - \( 3^2 = 9 \) (unit digit = 9) - \( 3^3 = 27 \) (unit digit = 7) - \( 3^4 = 81 \) (unit digit = 1) - The pattern repeats every 4: \( 3, 9, 7, 1 \). 3. **Find the exponent modulo 4**: - \( 103 \mod 4 = 3 \) (since \( 103 = 4 \times 25 + 3 \)). 4. **Identify the unit digit from the pattern**: The 3rd position in the pattern \( 3, 9, 7, 1 \) is \( 7 \). ### Step 3: Add the unit digits 1. **Add the unit digits found**: - Unit digit of \( (82)^{102} \) is \( 4 \). - Unit digit of \( (183)^{103} \) is \( 7 \). - \( 4 + 7 = 11 \). 2. **Find the unit digit of the sum**: The unit digit of \( 11 \) is \( 1 \). ### Final Answer The unit place digit in \( (82)^{102} + (183)^{103} \) is **1**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the unit digit in (1234)^(102) + (1234)^(103) (A) 2 (B) 4 (C ) 0 (D) 1

Find the units digit in (264)^(102)+backslash(264)^(103)

Unit digit in (264)^(102)+(264)^(103) is:

The digit in the unit place of the number (183)!+3^(183) is

The digit at the unit place of the number (2003)^(2003) is