Home
Class 14
MATHS
What is the value of (tan 45^@+1//sqrt2)...

What is the value of `(tan 45^@+1//sqrt2)`?

A

`-sqrt3//2`

B

`(sqrt2+2)//2`

C

`(2sqrt2-sqrt3)//2`

D

`(sqrt2-1)//sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 45^\circ + \frac{1}{\sqrt{2}} \), we can follow these steps: ### Step 1: Identify the value of \( \tan 45^\circ \) We know that: \[ \tan 45^\circ = 1 \] ### Step 2: Substitute the value of \( \tan 45^\circ \) into the expression Now, we can substitute this value into the expression: \[ \tan 45^\circ + \frac{1}{\sqrt{2}} = 1 + \frac{1}{\sqrt{2}} \] ### Step 3: Find a common denominator To add these two terms, we need a common denominator. The common denominator here is \( \sqrt{2} \): \[ 1 = \frac{\sqrt{2}}{\sqrt{2}} \] Thus, we can rewrite the expression as: \[ 1 + \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{\sqrt{2} + 1}{\sqrt{2}} \] ### Step 4: Rationalize the denominator To rationalize the denominator, we multiply the numerator and the denominator by \( \sqrt{2} \): \[ \frac{\sqrt{2} + 1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{(\sqrt{2} + 1) \cdot \sqrt{2}}{2} \] This simplifies to: \[ \frac{2 + \sqrt{2}}{2} \] ### Final Result Thus, the value of \( \tan 45^\circ + \frac{1}{\sqrt{2}} \) is: \[ \frac{2 + \sqrt{2}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (tan45^(@)+(1)/(sqrt(2))) ?

What is the value of (tan 30^@-sqrt3//2 ) ?

What is the value of (sin45^(@)-sqrt(3)) ?

What is the value of (tan 9^(@) tan 23^(@) tan 60^(@) tan67^(@) tan 81^(@))/("cosec"^(2)72^(@)+cos^(2)15^(@)-tan^(2)18^(@)+cos^(2)75^(@))? (a) (1)/(2 sqrt(3)) (b) (sqrt(3))/(2) (c) (1)/(sqrt(3)) (d) 2 sqrt(3)

What is the value of (tan30^(@)+(sqrt(3))/(2)) ?