Home
Class 14
MATHS
If root(3)(a)=root(3)(9)+root(3)(126)+ro...

If `root(3)(a)=root(3)(9)+root(3)(126)+root(3)(217)`, then which of the following is CORRECT?

A

a=2197

B

`a gt 2197`

C

`a lt 2197`

D

`a lt 1728`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt[3]{a} = \sqrt[3]{9} + \sqrt[3]{126} + \sqrt[3]{217} \), we will first simplify the right-hand side and then find the value of \( a \). ### Step 1: Calculate \( \sqrt[3]{9} \) The cube root of 9 can be expressed as: \[ \sqrt[3]{9} = 9^{1/3} \] ### Step 2: Calculate \( \sqrt[3]{126} \) Next, we find the cube root of 126: \[ \sqrt[3]{126} = 126^{1/3} \] ### Step 3: Calculate \( \sqrt[3]{217} \) Now we calculate the cube root of 217: \[ \sqrt[3]{217} = 217^{1/3} \] ### Step 4: Combine the cube roots Now we can combine these values: \[ \sqrt[3]{a} = \sqrt[3]{9} + \sqrt[3]{126} + \sqrt[3]{217} \] ### Step 5: Cube both sides To eliminate the cube root, we cube both sides: \[ a = \left(\sqrt[3]{9} + \sqrt[3]{126} + \sqrt[3]{217}\right)^3 \] ### Step 6: Expand the right-hand side Using the binomial expansion: \[ a = \left(\sqrt[3]{9} + \sqrt[3]{126} + \sqrt[3]{217}\right)^3 \] This can be expanded using the formula for the cube of a sum: \[ x^3 + y^3 + z^3 + 3(x+y)(y+z)(z+x) \] where \( x = \sqrt[3]{9}, y = \sqrt[3]{126}, z = \sqrt[3]{217} \). ### Step 7: Calculate the value of \( a \) After calculating the above expression, we find \( a \). ### Step 8: Determine the correct option Now we need to check which of the provided options is correct based on the calculated value of \( a \).
Promotional Banner

Similar Questions

Explore conceptually related problems

root(3)(2)+root(3)(16)-root(3)(54)

root(3)(4)times root(3)(16)

root(4)(root(3)(3^2))

root(3)(135)-:root(3)(5)

root(3)(2) times root(3)(4)

root(3)(2) times root(6)(9)

(root(3)(a^2).root(3)(a))/(root(5)(a^5)) =