Home
Class 14
MATHS
If x + 1/x = 2 then the value of x^12 -...

If x ` + 1/x = 2` then the value of `x^12 - (1)/(x^12)` is .

A

(a) `-4`

B

(b) 4

C

(c) 2

D

(d) 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + \frac{1}{x} = 2 \) and we need to find the value of \( x^{12} - \frac{1}{x^{12}} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x + \frac{1}{x} = 2 \] ### Step 2: Square both sides To find \( x^2 + \frac{1}{x^2} \), we square both sides: \[ \left(x + \frac{1}{x}\right)^2 = 2^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 4 \] ### Step 3: Rearrange to find \( x^2 + \frac{1}{x^2} \) Subtract 2 from both sides: \[ x^2 + \frac{1}{x^2} = 4 - 2 = 2 \] ### Step 4: Find \( x^4 + \frac{1}{x^4} \) Next, we square \( x^2 + \frac{1}{x^2} \): \[ \left(x^2 + \frac{1}{x^2}\right)^2 = 2^2 \] This expands to: \[ x^4 + 2 + \frac{1}{x^4} = 4 \] Rearranging gives: \[ x^4 + \frac{1}{x^4} = 4 - 2 = 2 \] ### Step 5: Find \( x^8 + \frac{1}{x^8} \) Now, we square \( x^4 + \frac{1}{x^4} \): \[ \left(x^4 + \frac{1}{x^4}\right)^2 = 2^2 \] This expands to: \[ x^8 + 2 + \frac{1}{x^8} = 4 \] Rearranging gives: \[ x^8 + \frac{1}{x^8} = 4 - 2 = 2 \] ### Step 6: Find \( x^{12} - \frac{1}{x^{12}} \) To find \( x^{12} - \frac{1}{x^{12}} \), we can use the identity: \[ x^{12} - \frac{1}{x^{12}} = (x^8 + \frac{1}{x^8})(x^4 - \frac{1}{x^4}) \] We already know: \[ x^8 + \frac{1}{x^8} = 2 \quad \text{and} \quad x^4 + \frac{1}{x^4} = 2 \] To find \( x^4 - \frac{1}{x^4} \), we use: \[ x^4 - \frac{1}{x^4} = \sqrt{(x^4 + \frac{1}{x^4})^2 - 4} = \sqrt{2^2 - 4} = \sqrt{0} = 0 \] ### Step 7: Substitute back to find \( x^{12} - \frac{1}{x^{12}} \) Now we substitute: \[ x^{12} - \frac{1}{x^{12}} = (x^8 + \frac{1}{x^8})(x^4 - \frac{1}{x^4}) = 2 \cdot 0 = 0 \] ### Final Answer Thus, the value of \( x^{12} - \frac{1}{x^{12}} \) is: \[ \boxed{0} \]

To solve the problem where \( x + \frac{1}{x} = 2 \) and we need to find the value of \( x^{12} - \frac{1}{x^{12}} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x + \frac{1}{x} = 2 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(x-(1)/(x))^(12)

If x+(1)/(x)=12, find the value of x-(1)/(x)

(x^(2)+(1)/(x))^(12)

If x= 11, then the value of x^5 -12x^4 +12x^3 -12x^2+12x-1 is - यदि x= 11 हो तो x^5 -12x^4 +12x^3 -12x^2+12x-1 का मान क्या होगा?