Home
Class 14
REASONING
If tantheta+cottheta=5 , then tan^(2)...

If `tantheta+cottheta=5` , then `tan^(2)theta+cot^(2)theta` is

A

23

B

24

C

25

D

26

Text Solution

Verified by Experts

The correct Answer is:
A

`tan theta + cot theta = 5`
` tan theta + (1)/(tan theta) = 5`
` therefore tan^2 theta + cot^2 theta = (tan theta + (1)/(tan theta) )^2 - 2`
` = 5^2 -2 = 23`
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta+cot theta=5then tan^(2)theta+cot^(2)theta=

If tan theta+cot theta=2," then "tan^(2)theta+cot^(2)theta=

if tan theta+cot theta=2 then tan^(2)theta-cot^(2)theta=

If tan theta + cot theta =2, " then " tan^(2) theta + cot^(2) theta is equal to

If tantheta+cottheta=2 , then the value of tan^(n)theta+cot^(n)theta ( 0^(@)lt theta lt90^(@),n is an integer) is

If tan theta + cot theta = 5, the value of tan^(2) theta + cot^(2) theta is :

If cot theta+tan theta=2 , then the value of tan^(2) theta- cot^(2) theta is _______

If tan theta+cot theta=2, find the value of tan^(2)theta+cot^(2)theta

If tan theta + cot theta = 2 , then theta is