Home
Class 14
MATHS
If the three angles of a triangle are: ...

If the three angles of a triangle are:
`(x + 15 ^(@) ), (( 6x)/(5) + 6 ^(@)) and ((2x)/( 3) + 30 ^(@)),` then the triangle is :
यदि एक त्रिभुज के तीन कोण हैं
`(x + 15 ^(@) ), (( 6x)/(5) + 6 ^(@)) and ((2x)/( 3) + 30 ^(@)),` तो त्रिभुज है

A

समद्विबाहु

B

समकोणीय

C

समबाहु

D

विषमबाहु

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angles of the triangle and determine the type of triangle formed based on those angles. ### Step-by-step Solution: 1. **Set up the equation for the sum of angles in a triangle:** The sum of the angles in a triangle is always 180 degrees. Therefore, we can write the equation: \[ (x + 15) + \left(\frac{6x}{5} + 6\right) + \left(\frac{2x}{3} + 30\right) = 180 \] 2. **Combine the terms:** First, we will combine the constant terms and the terms with \(x\): \[ x + \frac{6x}{5} + \frac{2x}{3} + 15 + 6 + 30 = 180 \] This simplifies to: \[ x + \frac{6x}{5} + \frac{2x}{3} + 51 = 180 \] 3. **Isolate the \(x\) terms:** Subtract 51 from both sides: \[ x + \frac{6x}{5} + \frac{2x}{3} = 180 - 51 \] \[ x + \frac{6x}{5} + \frac{2x}{3} = 129 \] 4. **Find a common denominator:** The common denominator for 1, 5, and 3 is 15. Rewrite each term: \[ \frac{15x}{15} + \frac{18x}{15} + \frac{10x}{15} = 129 \] Combine the fractions: \[ \frac{15x + 18x + 10x}{15} = 129 \] \[ \frac{43x}{15} = 129 \] 5. **Solve for \(x\):** Multiply both sides by 15: \[ 43x = 129 \times 15 \] Calculate \(129 \times 15\): \[ 129 \times 15 = 1935 \] Now divide by 43: \[ x = \frac{1935}{43} = 45 \] 6. **Calculate the angles:** Now substitute \(x = 45\) back into the expressions for the angles: - First angle: \[ x + 15 = 45 + 15 = 60^\circ \] - Second angle: \[ \frac{6x}{5} + 6 = \frac{6 \times 45}{5} + 6 = 54 + 6 = 60^\circ \] - Third angle: \[ \frac{2x}{3} + 30 = \frac{2 \times 45}{3} + 30 = 30 + 30 = 60^\circ \] 7. **Determine the type of triangle:** Since all three angles are equal to \(60^\circ\), the triangle is an equilateral triangle. ### Conclusion: The triangle is an **equilateral triangle**. ---

To solve the problem, we need to find the angles of the triangle and determine the type of triangle formed based on those angles. ### Step-by-step Solution: 1. **Set up the equation for the sum of angles in a triangle:** The sum of the angles in a triangle is always 180 degrees. Therefore, we can write the equation: \[ (x + 15) + \left(\frac{6x}{5} + 6\right) + \left(\frac{2x}{3} + 30\right) = 180 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The angles of a triangle are (x^(@))/(1.5),(x^(@))/(2) and (x^(@))/(3) then the smallest angle is

The angles of a triangle are 2x - 3, x + 12, x - 1. Biggest angle of the triangle is : त्रिभुज के कोण 2x -3,x+12,x- 1. तो त्रिभुज का सबसे बड़ा कोण है:

For what kind of triangle will the angle be 4x^(o),(5x-15)^(@) and (2x+30)^(0)

The measures of three angles of a triangle are in the ratio of 3 : 2 : 1. The triangle is a/an: त्रिभुज के तीन कोणों के माप 3: 2: 1. के अनुपात में हैं। त्रिभुज है: