Home
Class 14
MATHS
If p/a + q/b + r/c = 1 and a/p + b/q + c...

If `p/a + q/b + r/c = 1` and `a/p + b/q + c/r = 0`, where p, q,r and a, b,c are non-zero, then the value of `(p^2)/(a^2) + (q^2)/(b^2) + (r^2)/(c^2)` is

A

(a) `-1`

B

(b) `0`

C

(c) `1`

D

(d) `2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\) 2. \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\) We need to find the value of \(\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2}\). ### Step 1: Square the first equation We start by squaring the first equation: \[ \left(\frac{p}{a} + \frac{q}{b} + \frac{r}{c}\right)^2 = 1^2 \] ### Step 2: Expand the squared equation Using the formula \((x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz)\), we expand: \[ \frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2} + 2\left(\frac{pq}{ab} + \frac{qr}{bc} + \frac{rp}{ca}\right) = 1 \] ### Step 3: Substitute the second equation From the second equation, we know: \[ \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0 \] This can be rewritten as: \[ \frac{bc}{pq} + \frac{ca}{rp} + \frac{ab}{qr} = 0 \] ### Step 4: Rearranging the second equation Multiplying through by \(pqr\) gives: \[ bc \cdot r + ca \cdot p + ab \cdot q = 0 \] This implies: \[ \frac{pq}{ab} + \frac{qr}{bc} + \frac{rp}{ca} = 0 \] ### Step 5: Substitute back into the expanded equation Substituting this back into our expanded equation gives: \[ \frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2} + 2 \cdot 0 = 1 \] Thus, we have: \[ \frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2} = 1 \] ### Final Result The value of \(\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2}\) is: \[ \boxed{1} \]

To solve the problem, we start with the given equations: 1. \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\) 2. \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\) We need to find the value of \(\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2}\). ### Step 1: Square the first equation ...
Promotional Banner