Home
Class 14
MATHS
If x = sqrt(5) + 2, then the value (2x^2...

If `x = sqrt(5) + 2`, then the value `(2x^2 - 3x - 2)/(3x^2 - 4x - 3)` is equal to
यदि `x = sqrt(5) + 2`, तो`(2x^2 - 3x - 2)/(3x^2 - 4x - 3)` का मान किसके बराबर होगा?

A

`0.185`

B

`0.525 `

C

`0.625`

D

`0.785 `

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((2x^2 - 3x - 2)/(3x^2 - 4x - 3)\) when \(x = \sqrt{5} + 2\), we will substitute \(x\) into the expression and simplify it step by step. ### Step 1: Substitute \(x\) into the expression Given \(x = \sqrt{5} + 2\), we substitute this value into the expression: \[ \frac{2x^2 - 3x - 2}{3x^2 - 4x - 3} \] ### Step 2: Calculate \(x^2\) First, we need to calculate \(x^2\): \[ x^2 = (\sqrt{5} + 2)^2 = (\sqrt{5})^2 + 2 \cdot \sqrt{5} \cdot 2 + 2^2 = 5 + 4\sqrt{5} + 4 = 9 + 4\sqrt{5} \] ### Step 3: Calculate \(2x^2\) Now, we calculate \(2x^2\): \[ 2x^2 = 2(9 + 4\sqrt{5}) = 18 + 8\sqrt{5} \] ### Step 4: Calculate \(3x\) Next, we calculate \(3x\): \[ 3x = 3(\sqrt{5} + 2) = 3\sqrt{5} + 6 \] ### Step 5: Substitute into the numerator Now substitute \(2x^2\) and \(3x\) into the numerator: \[ 2x^2 - 3x - 2 = (18 + 8\sqrt{5}) - (3\sqrt{5} + 6) - 2 \] Simplifying this: \[ = 18 + 8\sqrt{5} - 3\sqrt{5} - 6 - 2 = 18 - 6 - 2 + (8\sqrt{5} - 3\sqrt{5}) = 10 + 5\sqrt{5} \] ### Step 6: Calculate \(3x^2\) Next, we calculate \(3x^2\): \[ 3x^2 = 3(9 + 4\sqrt{5}) = 27 + 12\sqrt{5} \] ### Step 7: Calculate \(4x\) Now, calculate \(4x\): \[ 4x = 4(\sqrt{5} + 2) = 4\sqrt{5} + 8 \] ### Step 8: Substitute into the denominator Now substitute \(3x^2\) and \(4x\) into the denominator: \[ 3x^2 - 4x - 3 = (27 + 12\sqrt{5}) - (4\sqrt{5} + 8) - 3 \] Simplifying this: \[ = 27 - 8 - 3 + (12\sqrt{5} - 4\sqrt{5}) = 16 + 8\sqrt{5} \] ### Step 9: Form the complete expression Now we have: \[ \frac{10 + 5\sqrt{5}}{16 + 8\sqrt{5}} \] ### Step 10: Simplify the fraction To simplify, we can factor out common terms: \[ = \frac{5(2 + \sqrt{5})}{8(2 + \sqrt{5})} \] Cancelling \(2 + \sqrt{5}\) from numerator and denominator: \[ = \frac{5}{8} \] ### Step 11: Convert to decimal Finally, converting \(\frac{5}{8}\) to decimal form: \[ \frac{5}{8} = 0.625 \] Thus, the value of \((2x^2 - 3x - 2)/(3x^2 - 4x - 3)\) is \(\frac{5}{8}\) or \(0.625\). ---

To find the value of \((2x^2 - 3x - 2)/(3x^2 - 4x - 3)\) when \(x = \sqrt{5} + 2\), we will substitute \(x\) into the expression and simplify it step by step. ### Step 1: Substitute \(x\) into the expression Given \(x = \sqrt{5} + 2\), we substitute this value into the expression: \[ \frac{2x^2 - 3x - 2}{3x^2 - 4x - 3} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+1/x= 2 sqrt3 , then x^2+1/x^2 is equal to : यदि x+1/x= 2 sqrt3 है, तो x^2+1/x^2 का मान किसके बराबर है?

sqrt(((x^2 + 3x + 2)(x^2 + 5x + 6))/(x^2 (x^2 + 4x+ 3))) is equal to :

If x+1/x= 8 , then x^2+1/x^2 is equal to : यदि x+1/x= 8 है, तो x^2+1/x^2 का मान किसके बराबर होगा ?

If x=1+sqrt""2+sqrt""3 , then the value of 2x^(4)-8x^(3)-5x^(2)+26x-28 is :

If x=(sqrt(3)+1)/(2), find the value of 4x^(3)+2x^(2)-8x+7

If x = a +1/a and y=a-1/a then sqrt(x^4+ y^4-2x^2y^2) is equal to : यदि x = a +1/a और y=a-1/a है, तो sqrt(x^4+ y^4-2x^2y^2) का मान किसके बराबर होगा?

If x^2+1/x^2=11 , then x-1/x is equal to : यदि x^2+1/x^2=11 है, तो x-1/x का मान किसके बराबर होगा ?

If x is real, and x^4-5x^2-1=0 , then the value of (x^6-3x^2+3/x^2-1/x^6+1) is : यदि x वास्तविक है तथा x^4-5x^2-1=0 है, तो (x^6-3x^2+3/x^2-1/x^6+1) का मान क्या होगा ?