Home
Class 14
MATHS
If x^4 + 1/(x^4) = 119 and x > 1. Then f...

If `x^4 + 1/(x^4) = 119 and x > 1`. Then find the positive value of `x^3 - 1/(x^3)` .

A

25

B

27

C

36

D

49

Text Solution

Verified by Experts

The correct Answer is:
C

`x^4 + 1/x^4 = 119`
`(x^2 + 1/x^2)^2 - 2 = 119`
`implies (x^2 + 1/x^2)^2 = 121`
`implies x^2 + 1/x^2 + 11`
`implies (x - 1/x)^2+ 2 = 11`
`implies x - 1/x = 3`
`therefore x^3 - 1/x^3 = (x- 1/x)^3 + 3(x-1/x)`
`= (3)^3 + 3(3)`
= 27 + 9 = 36
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4) +(1)/(x^(4)) =119 and x gt 1 then what is the value of x^(3)-(1)/(x^(3)) ?

If x^4 + (1)/(x^4) =727 , then find the value of x^3 - (1)/(x^3)

If x+(1)/(x) =4 then find the value of x^(3)+(1)/(x^(3)) .

4^(x-1)=3^(x) then find the value of x

if 3^(x)=4^(x-1) then find the value of x

If X+ 1/x=4, then value of x^3 + 1//x^3=?

If x+1/x=3 find the value of x^4+1/x^4