Home
Class 14
MATHS
If x ^(4) +(1)/(x ^(4))= 119, then the v...

If `x ^(4) +(1)/(x ^(4))= 119,` then the value of `x ^(3) - (1)/(x ^(3))` is :

A

`pm 33`

B

36

C

`-36`

D

`pm 36`

Text Solution

Verified by Experts

The correct Answer is:
D

`x^4 + 1/x^4 = 119`
`implies x^4 + 1/x^4 + 2x^2 xx 1/x^2 = 121`
`implies (x^2 + (1)/(x^2))^2 = (11)^2`
`implies x^2 + 1/x^2 = 11`
`implies x^2 + 1/x^2 - 2 xx x xx 1/x = 11-2`
`implies (x-1/x)^2= (3)^2`
`implies x- 1/x = pm 3`
`therefore x^3 - 1/x^3 = (3)^3 + 3 xx 3 = 36`
or `(-3)^3 + 3xx (-3) = - 36`
`therefore x^3 - 1/x^3 = pm 36`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4)+(1)/(x^(4))=119, find the value of x^(3)-(1)/(x^(3))

If x<0 and x^(4)+(1)/(x^(4))=47, then the value of x^(3)+(1)/(x^(3)) is

If x^(4) + ((1)/(x^(4))) = 34 , what is the value of x^(3) - ((1)/(x^(3))) ?

if x^(4)+(1)/(x^(4))=322 then find the value of x^(3)-(1)/(x^(3))