Home
Class 14
MATHS
Prove that: sin^(6) theta + cos^(6) thet...

Prove that: `sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta`

A

1

B

`1-3 sin^2 theta cos^2 theta`

C

`1-3 sin theta cos theta`

D

`1+ 3 sin^2 theta cos^2 theta`

Text Solution

Verified by Experts

The correct Answer is:
B

`sin^6 theta + cos^6 theta`
`=(sin^2 theta + cos^2 theta )^3 `
`=(sin^2 theta + cos^2 theta)^3 - 3 sin^2 theta . Cos^2 theta . (sin^2 theta + cos^2 theta)`
`=1-3 sin^2 theta . Cos^2 theta`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-(3)/(4)sin^(2)2 theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

If sin^(6) theta + cos^(6) theta -1 = lambda sin^(2) theta cos^(2) theta then the value of lambda is

What is ( sin ^(6) theta - cos ^(6) theta )/( sin ^(2) theta - cos ^(2) theta) equal to ?

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta