Home
Class 14
MATHS
A parallelogram has sides 60 m and 40 m ...

A parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Its area is.
एक समांतर चतुर्भुज की भुजाएँ 60m और 40m हैं और उसका एक विकर्ण 80m लंबा है। उसका क्षेत्रफल कितना होगा?

A

`450 sqrt(15) m^(2)`

B

`500 sqrt(15)m^(2)`

C

`600 sqrt(15) m^(2)`

D

`400 sqrt(15) m^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the parallelogram with sides 60 m and 40 m and a diagonal of 80 m, we will use Heron's formula. Here’s a step-by-step solution: ### Step 1: Identify the sides and diagonal We have: - Side AB = 60 m - Side AD = 40 m - Diagonal AC = 80 m ### Step 2: Calculate the semi-perimeter The semi-perimeter (s) of triangle ABC can be calculated using the formula: \[ s = \frac{AB + BC + AC}{2} \] Since BC is equal to AD (as opposite sides of a parallelogram are equal), we have: \[ s = \frac{60 + 40 + 80}{2} = \frac{180}{2} = 90 \, m \] ### Step 3: Apply Heron's formula Heron's formula for the area (A) of a triangle is given by: \[ A = \sqrt{s(s - a)(s - b)(s - c)} \] Where: - \( a = AB = 60 \, m \) - \( b = AC = 80 \, m \) - \( c = AD = 40 \, m \) Substituting the values into the formula: \[ A = \sqrt{90(90 - 60)(90 - 80)(90 - 40)} \] \[ A = \sqrt{90 \times 30 \times 10 \times 50} \] ### Step 4: Simplify the expression Calculating the values inside the square root: \[ A = \sqrt{90 \times 30 \times 10 \times 50} \] \[ = \sqrt{1350000} \] ### Step 5: Factor the expression We can simplify \( 1350000 \): \[ 1350000 = 135 \times 10000 = 135 \times 100^2 \] \[ = 135 \times 100^2 = 10000 \times 135 \] So, \[ A = 100 \sqrt{135} \] ### Step 6: Calculate the area of the parallelogram Since the diagonal divides the parallelogram into two equal triangles, the total area of the parallelogram will be: \[ \text{Area of Parallelogram} = 2 \times A = 2 \times 100 \sqrt{135} = 200 \sqrt{135} \] ### Step 7: Final simplification We can simplify \( \sqrt{135} \): \[ \sqrt{135} = \sqrt{9 \times 15} = 3\sqrt{15} \] Thus, the area becomes: \[ \text{Area of Parallelogram} = 200 \times 3\sqrt{15} = 600\sqrt{15} \] ### Final Answer The area of the parallelogram is \( 600\sqrt{15} \, m^2 \). ---

To find the area of the parallelogram with sides 60 m and 40 m and a diagonal of 80 m, we will use Heron's formula. Here’s a step-by-step solution: ### Step 1: Identify the sides and diagonal We have: - Side AB = 60 m - Side AD = 40 m - Diagonal AC = 80 m ...
Promotional Banner

Similar Questions

Explore conceptually related problems

A parallelogram has sides 30 m, 70 m and one of its diagonals is 80 m long. Its area will be

A parallelogram has sides 30 cm and 20 cm and one of its diagonal is 40 cm long. Then its area is :

A parallelogram has two sides 60 m and 25 m and a diagonal 65 m long. The area of the parallelogram is :

A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Find the area of the parallelogram.

One side of a rhombus is 6.5 cm and one of it’s diagonal is 12 cm. What is the area of the rhombus? किसी समचतुर्भुज की एक भुजा 6.5 सेमी की है तथा इसका एक विकर्ण 12 सेमी का है | इस समचतुर्भुज का क्षेत्रफल ज्ञात करें |

The base of a parallelogram measures 1 m 60 cm and its height is 75 cm. Find its area in m^(2) .

One side of a rhombus is 13 cm and one of its diagonals is 24cm. What is the area (in cm^2 ) of rhombus? किसी समचतुर्भुज की एक भुजा 13 cm और एक विकर्ण 24 cm है। समचतुर्भुज का क्षेत्रफल ज्ञात करे | ( cm^2 में)

One side of a rhombus is 13cm and one of its diagonal is 10 cm. What is the area of the rhombus (in cm^2 ) ? किसी समचतुर्भुज की एक भुजा 13 cm और एक विकर्ण 10 cm है। समचतुर्भुज का क्षेत्रफल ज्ञात करे | ( cm^2 में)

The perimeter of a rhombus is 40 m and its height is 5 m. Its area is :