Home
Class 14
MATHS
The value of (1001)^(3) is. (1001)^(3)...

The value of `(1001)^(3)` is.
`(1001)^(3)` का मान क्या है?

A

`103003001`

B

`1003003001`

C

`100303001`

D

`100300301`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (1001)^3 \), we can use the binomial expansion formula for \( (a + b)^3 \), which is given by: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] In this case, we can set \( a = 1000 \) and \( b = 1 \). Therefore, we can rewrite \( (1001)^3 \) as: \[ (1001)^3 = (1000 + 1)^3 \] Now, applying the binomial expansion: 1. **Calculate \( a^3 \)**: \[ a^3 = (1000)^3 = 1000 \times 1000 \times 1000 = 1000000000 \] 2. **Calculate \( b^3 \)**: \[ b^3 = (1)^3 = 1 \] 3. **Calculate \( 3ab(a + b) \)**: \[ 3ab(a + b) = 3 \times 1000 \times 1 \times (1000 + 1) = 3 \times 1000 \times 1 \times 1001 \] First, calculate \( 3 \times 1000 = 3000 \). Then, calculate \( 3000 \times 1001 = 3003000 \). 4. **Combine all parts together**: \[ (1001)^3 = a^3 + b^3 + 3ab(a + b) = 1000000000 + 1 + 3003000 \] 5. **Perform the addition**: \[ 1000000000 + 1 = 1000000001 \] \[ 1000000001 + 3003000 = 1003003001 \] Thus, the value of \( (1001)^3 \) is: \[ \boxed{1003003001} \]

To find the value of \( (1001)^3 \), we can use the binomial expansion formula for \( (a + b)^3 \), which is given by: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] In this case, we can set \( a = 1000 \) and \( b = 1 \). Therefore, we can rewrite \( (1001)^3 \) as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate (1001)^(1//3) .

What is the value of cot(90^@+75)^@ ? cot(90^@+75)^@ का मान क्या है?

The successor of 1001 is

If y^2 = y + 7 , then what is the value of y^3 ? यदि y^2 = y + 7 है, तो y^3 का मान क्या है?

12.5% of A = 55, What is the value of A? A का 12.5%= 55 है | A का मान क्या है?

Find the value of sqrt(4+ sqrt144) sqrt(4+ sqrt144) का मान क्या है ?

If 3 sec^2 x-4=0 , then the value of x(0 यदि 3 sec^2 x-4=0 है, तो x का मान क्या होगा ? (0