Home
Class 14
MATHS
If ab + bc + ca = 0, then the value of 1...

If ab + bc + ca = 0, then the value of `1/(a^2-bc) + 1/(b^2-ca) + 1/(c^2-ab)` will be:

A

2

B

-1

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
C

`ab+bc+ca=0`
`ab+ca=-bc`
`rArra^(2)+ab+ca=a^(2)-bc`
`a^(2)-bc=a(a+b+c)`
Similarly
`b^(2)-ca=b(a+b+c)`
`c^(2)-ab=c(a+b+c)`
`therefore1/(a^(2)-bc)+1/(b^(2)-ac)+1/(c^(2)-ab)`
= `1/(a(a+b+c))+1/(b(a+b+c))+1/(c(a+b+c))`
= `(bc+ca+ab)/(abc(a+b+c))`
= `0/(abc.(a+b+c))=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?

If a+b+c=0 , then the value of (a^2 + b^2 +c^2)/(bc+ca+ab) is….

If a+b+c=0, then write the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)

If a+b+c=0, then find the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)