Home
Class 14
MATHS
If AD is the median of the triangle ABC ...

If AD is the median of the triangle ABC and G be the centroid then the ratio of AG : AD is.
यदि AD त्रिभुज ABC की माध्यिका है और G केंद्रक है, तो AG : AD का अनुपात क्या होगा?

A

`1:3`

B

`2:1`

C

`3:2`

D

`2:3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of AG to AD, where AD is the median of triangle ABC and G is the centroid. ### Step-by-Step Solution: 1. **Understanding the Triangle and Median**: - Consider triangle ABC. A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side. Here, AD is the median from vertex A to the midpoint D of side BC. 2. **Identifying the Centroid**: - The centroid (G) of a triangle is the point where the three medians intersect. It divides each median into two segments: one segment is twice the length of the other. Specifically, the segment connecting the vertex to the centroid is twice as long as the segment connecting the centroid to the midpoint of the opposite side. 3. **Using the Property of the Centroid**: - The centroid divides the median in the ratio 2:1. This means that if we denote AG as the segment from vertex A to the centroid G, and GD as the segment from the centroid G to the midpoint D, we have: \[ AG : GD = 2 : 1 \] 4. **Finding the Ratio AG : AD**: - The entire length of the median AD can be expressed as: \[ AD = AG + GD \] - Since we know AG : GD = 2 : 1, we can express GD in terms of AG: \[ GD = \frac{1}{2} AG \] - Therefore, we can express AD as: \[ AD = AG + GD = AG + \frac{1}{2} AG = \frac{3}{2} AG \] 5. **Calculating the Ratio**: - Now, we can find the ratio AG : AD: \[ AG : AD = AG : \frac{3}{2} AG \] - Simplifying this gives: \[ AG : AD = 1 : \frac{3}{2} = 2 : 3 \] ### Final Answer: The ratio of AG to AD is \( 2 : 3 \).

To solve the problem, we need to find the ratio of AG to AD, where AD is the median of triangle ABC and G is the centroid. ### Step-by-Step Solution: 1. **Understanding the Triangle and Median**: - Consider triangle ABC. A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side. Here, AD is the median from vertex A to the midpoint D of side BC. 2. **Identifying the Centroid**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If G is the centroid of Delta ABC and AG-BC, then /_BGC is :

If AD, BE and CF are medians of triangle ABC then prove that median AD divides line segment EF.

If I is the incentre of triangle ABC and angle BIC = 135^@ , then triangle ABC is यदि I त्रिभुज triangle ABC का अंतः केंद्र है और angle BIC = 135^@ तो triangle ABC है-

In triangle ABC , angle A=54^@ . If I is the incentre of the triangle, then the measure of angle BIC is: त्रिभुज ABC में, angle A=54^@ है |यदि I त्रिभुज का अंतःकेंद्र है, तो angle BIC का माप है

ABC is an equilateral triangle with side 12cm and AD is the median. Find the length of GD if G is the centroid of triangle ABC . ABC एक समबाहु त्रिभुज है जिसके भुजा 12cm और AD मध्यिका है। GD की लंबाई ज्ञात करें यदि G, triangle ABC का केन्द्रक है।

In triangle ABC AD, BE, CF are medians. If the area of the triangle DGC is 20cm^2 , then the area of triangle AGF + the area of triangle BGF is equal to: त्रिभुज ABC में, AD, BE और CF मध्यरेखा हैं और G त्रिभुज का केन्द्रक है। यदि त्रिभुज DGC का क्षेत्रफल 20cm^2 है, तो त्रिभुज AGF का क्षेत्रफल+ त्रिभुज BGF का क्षेत्रफल किसके बराबर है:

In triangle ABC , AB=7cm, BC=24cm and AC=25cm. If G is the centroid of the triangle, then what is the length (in cm) of BG? triangle ABC में, AB=7cm, BC=24cm और AC=25cm है| यदि G त्रिभुज का केंद्रक है, तो BG की लंबाई (cm में) कितनी है?