Home
Class 14
MATHS
Among the angles 30^(@), 36^(@), 45^(@),...

Among the angles `30^(@), 36^(@), 45^(@), 50^(@)` one angle cannot be an exterior angle of a regular polygon. The angle is.
कोणों `30^(@), 36^(@), 45^(@), 50^(@)` में से एक कोण किसी सम बहुभुज का बाह्य कोण नहीं हो सकता। कोण है:

A

`45^(@)`

B

`50^(@)`

C

`30^(@)`

D

`36^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which angle among \(30^\circ\), \(36^\circ\), \(45^\circ\), and \(50^\circ\) cannot be an exterior angle of a regular polygon, we can use the formula for the exterior angle of a regular polygon: \[ \text{Exterior Angle} = \frac{360^\circ}{n} \] where \(n\) is the number of sides of the polygon. The exterior angle must be a divisor of \(360^\circ\) and must correspond to a whole number of sides \(n\). ### Step 1: Check each angle 1. **For \(30^\circ\)**: \[ n = \frac{360^\circ}{30^\circ} = 12 \] (12 sides, valid) 2. **For \(36^\circ\)**: \[ n = \frac{360^\circ}{36^\circ} = 10 \] (10 sides, valid) 3. **For \(45^\circ\)**: \[ n = \frac{360^\circ}{45^\circ} = 8 \] (8 sides, valid) 4. **For \(50^\circ\)**: \[ n = \frac{360^\circ}{50^\circ} = 7.2 \] (Not a whole number, invalid) ### Conclusion The angle that cannot be an exterior angle of a regular polygon is \(50^\circ\).

To determine which angle among \(30^\circ\), \(36^\circ\), \(45^\circ\), and \(50^\circ\) cannot be an exterior angle of a regular polygon, we can use the formula for the exterior angle of a regular polygon: \[ \text{Exterior Angle} = \frac{360^\circ}{n} \] where \(n\) is the number of sides of the polygon. The exterior angle must be a divisor of \(360^\circ\) and must correspond to a whole number of sides \(n\). ...
Promotional Banner