Home
Class 14
MATHS
55^(3)+17^(3)-72^(3)+201960 is equal to...

`55^(3)+17^(3)-72^(3)+201960` is equal to

A

1

B

17

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D

`55^(2)+17^(3)-72^(2)+201960`
`a=55, b=17, c=-72`
`[{:( :.a+b+c=0),( :.a^(3)+b^(3)+c^(3)=3abc):}]`
`-3xx5xx17xx72=-201960`
`rArr :.55^(3)+17^(3)-72^(3)+201960`
`=-201960+201960=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let N=55^(3)+17^(3)-72^(3). Then,N is divisible by both 7 and 13 (b) both 3 and 13 both 17 and 7(d) both 3 and 17

root3(72.9/0.4096) is equal to :

sin^(2)17.5^(@) +sin^(2)72.5^(@) is equal to:

sin^(2)17.5^(@)+sin^(2)72.5^(@) is equal to

If cos28^(0)+sin28^(0)=k^(3), thencos 17^(0) is equal to (a) (k^(3))/(sqrt(2))(b)-(k^(3))/(sqrt(2))(c)+-(k^(3))/(sqrt(2))(d) none of

"sin"^(-1)(8)/(17)+"sin"^(-1)(3)/(5) is equal to