Home
Class 14
MATHS
If sin theta=0.7, "then" cos theta, 0 le...

If `sin theta=0.7, "then" cos theta, 0 le theta lt 90^(@)` is
यदि `sin theta=0.7,` तो `cos theta, 0 le theta lt 90^(@)` है :

A

`sqrt(0.51)`

B

`sqrt(9)`

C

`0.3`

D

`sqrt(0.49)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos \theta \) given that \( \sin \theta = 0.7 \) and \( 0 \leq \theta < 90^\circ \), we can use the Pythagorean identity: \[ \cos^2 \theta + \sin^2 \theta = 1 \] ### Step-by-Step Solution: 1. **Use the Pythagorean Identity**: \[ \cos^2 \theta = 1 - \sin^2 \theta \] 2. **Substitute the value of \( \sin \theta \)**: Since \( \sin \theta = 0.7 \), we substitute this into the equation: \[ \cos^2 \theta = 1 - (0.7)^2 \] 3. **Calculate \( (0.7)^2 \)**: \[ (0.7)^2 = 0.49 \] 4. **Subtract from 1**: \[ \cos^2 \theta = 1 - 0.49 = 0.51 \] 5. **Take the square root**: \[ \cos \theta = \sqrt{0.51} \] 6. **Determine the sign**: Since \( 0 \leq \theta < 90^\circ \), \( \cos \theta \) must be positive. Thus: \[ \cos \theta = \sqrt{0.51} \] ### Final Answer: \[ \cos \theta = \sqrt{0.51} \]

To find the value of \( \cos \theta \) given that \( \sin \theta = 0.7 \) and \( 0 \leq \theta < 90^\circ \), we can use the Pythagorean identity: \[ \cos^2 \theta + \sin^2 \theta = 1 \] ### Step-by-Step Solution: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta=0.7 , then costheta,0le0lt90^(@) is

If sin 2 theta = cos theta , where 0^(@) le theta le 90^(@) , then theta =

If sin theta = sqrt(3) cos theta, 0 lt theta lt 90^(@) , then theta is equal to .

If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@) ,then the value of sin theta + cos theta is:

If sin theta - cos theta =0, 0 le theta le 90^(@) then the value of theta is _____-

If 0lt theta lt 90^(@) , the (sin theta+cos theta) is :

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in