Home
Class 14
MATHS
If the ratio of volumes of two cones is ...

If the ratio of volumes of two cones is 2:3 and the ratio of the radii of their bases is 1:2, then the ratio of their heights will be.
यदि दो शंकुओं के आयतनों का अनुपात 2:3 है और उनके आधारों की त्रिज्याओं का अनुपात 1 : 2 है, तो उनकी ऊँचाईयों का अनुपात होगा

A

`4:3`

B

`3:4`

C

`8:3`

D

`3:8`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio of the heights of two cones given the ratio of their volumes and the ratio of the radii of their bases, we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Volume Formula of a Cone**: The volume \( V \) of a cone is given by the formula: \[ V = \frac{1}{3} \pi r^2 h \] where \( r \) is the radius of the base and \( h \) is the height of the cone. 2. **Set Up the Ratios**: We are given the ratio of the volumes of two cones \( V_1 : V_2 = 2 : 3 \) and the ratio of the radii of their bases \( r_1 : r_2 = 1 : 2 \). 3. **Express the Volumes in Terms of the Radii and Heights**: Using the volume formula for both cones, we can write: \[ \frac{V_1}{V_2} = \frac{\frac{1}{3} \pi r_1^2 h_1}{\frac{1}{3} \pi r_2^2 h_2} \] This simplifies to: \[ \frac{r_1^2 h_1}{r_2^2 h_2} \] 4. **Substitute the Known Ratios**: We know \( \frac{V_1}{V_2} = \frac{2}{3} \) and \( \frac{r_1}{r_2} = \frac{1}{2} \). Therefore, we can express \( r_1^2 \) and \( r_2^2 \): \[ r_1^2 = \left(\frac{1}{2} r_2\right)^2 = \frac{1}{4} r_2^2 \] Now substituting this into the volume ratio gives: \[ \frac{\frac{1}{4} r_2^2 h_1}{r_2^2 h_2} = \frac{2}{3} \] 5. **Simplify the Equation**: The \( r_2^2 \) cancels out: \[ \frac{1}{4} \frac{h_1}{h_2} = \frac{2}{3} \] 6. **Cross Multiply to Solve for the Height Ratio**: Cross multiplying gives: \[ 3h_1 = 8h_2 \] Therefore, we can express the ratio of the heights: \[ \frac{h_1}{h_2} = \frac{8}{3} \] 7. **Conclusion**: The ratio of the heights of the two cones is: \[ h_1 : h_2 = 8 : 3 \]

To find the ratio of the heights of two cones given the ratio of their volumes and the ratio of the radii of their bases, we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Volume Formula of a Cone**: The volume \( V \) of a cone is given by the formula: \[ V = \frac{1}{3} \pi r^2 h ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The ratio of the volumes of two cylinders is x:y and the ratio of their diameters is a:b. What is the ratio of their heights? दो बेलनों के आयतन का अनुपात x :y है और उनके व्यास का अनुपात a:b है | उनकी ऊंचाई का अनुपात ज्ञात करें |

The ratio of the radii of two cones is 5 : 6 and their volume is in the ratio 8 : 9. The ratio of their height is : दो शंकु की त्रिज्या का अनुपात 5: 6 है और उनकी आयतन 8: 9 के अनुपात में है। उनकी ऊंचाई का अनुपात क्या होगा

The radii of two right circular cylinders are in the ratio 3:2 and the ratio of their volumes is 27:16. What is the ratio of their heights? दो लंब वृत्तीय बेलनों की त्रिज्याओं का अनुपात 3 : 2 है और उनके आयतनों का अनुपात 27: 16 है। उनकी ऊंचाइयों का अनुपात ज्ञात कीजिए।

The ratio of the areas of two squares is 16: 1. Find the ratio between their perimeters. दो वर्गों के क्षेत्रों का अनुपात 16: 1 है. उनके परिधि के बीच का अनुपात ज्ञात करें।

If the base radius of 2 cylinders are in the ratio 3:4 and their heights are in the ratio of 4:9, then the ratio of their volumes is: यदि दो बेलनों के आधार की त्रिज्या का अनुपात 3 : 4 है तथा उनकी ऊंचाई का अनुपात 4 : 9 है, तो उनके आयतन का अनुपात क्या होगा ?

The radii of two right circular cylinders are in the ratio 3 : 2 and the ratio of their volumes is 27:16. What is the ratio of their heights? दो गोलाकार सिलेंडरों की त्रिज्या 3: 2 के अनुपात में है और उनके आयतन का अनुपात 27:16 है। उनकी लम्बाई का अनुपात कया है

The ratio of the areas of two squares is 16 : 1. Find the ratio between their perimeters. दो वर्गों के क्षेत्रफल का अनुपात 16: 1 है. उनके परिधि के बीच का अनुपात ज्ञात करें।

Given that the ratio of altitudes of two triangles is 4 : 5, ratio of their areas is 3 : 2. The ratio of their corresponding bases is:- माना कि दो त्रिभुजों का शीर्ष लम्ब 4 : 5 है, उनके क्षेत्रफल का अनुपात 3 : 2 है। उनके तदनुरूपी आधार का अनुपात क्या होगा?

If the volumes of two cubes are in the ratio 64:125, then what is the ratio of their total surface areas? यदि दो घनों के आयतन 64 : 125 के अनुपात में हैं, तो उनके कुल पृष्ठ क्षेत्रफलों का अनुपात क्या होगा ?