Home
Class 14
MATHS
The simplest form of the expression ...

The simplest form of the expression ` (p^(2) - p)/( 2 p^(3) + 6 p^(2)) + (p^(2) - 1)/( p^(2) + 3 p) + (p^(2))/( p + 1)` is

A

`2p^2`

B

`1/(2p^(2)`

C

p + 3

D

`1/(p + 3)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(P^2 -P)/(2P^3 + 6P^2 )div(P^2 - 1 )/(P^2 + 3P)div P^2/(P + 1)`
= `P(P-1)/2P^2(P+3)xx(p(P+8))/(P-1)(P+1)xx(P+1)/P^2`
`1/2P^2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If p!=0 and (p-(1)/(p))^(2)=a then p^(3)-(1)/(p^(3)) =?

Find the product (p-(1)/(p))(p+(1)/(p))(p^(2)+(1)/(p^(2)))(p^(4)+(1)/(p^(4)))