Home
Class 14
MATHS
The greatest common divisor of (3^3)^333...

The greatest common divisor of `(3^3)^333 + 1 and (3^3)^334 + 1` is:
` 3^(3333)` +1 तथा `3^(3334)` +1 का महत्तम समापवर्तक कितना है?

A

A. `3^(3333)` + 1

B

B. 20

C

C. 2

D

D. 1

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest common divisor (GCD) of the two expressions \( (3^3)^{333} + 1 \) and \( (3^3)^{334} + 1 \), we can follow these steps: ### Step 1: Rewrite the expressions We start by rewriting the expressions in simpler forms: - Let \( a = 3^3 = 27 \). - Then, we can rewrite the expressions as: - \( a^{333} + 1 \) - \( a^{334} + 1 \) ### Step 2: Identify the GCD We need to find \( \text{GCD}(a^{333} + 1, a^{334} + 1) \). ### Step 3: Use the GCD property We can use the property of GCD that states: \[ \text{GCD}(x, y) = \text{GCD}(x, y - kx) \] for any integer \( k \). In our case, we can apply this property: \[ \text{GCD}(a^{333} + 1, a^{334} + 1) = \text{GCD}(a^{333} + 1, (a^{334} + 1) - (a \cdot (a^{333} + 1))) \] ### Step 4: Simplify the second term Calculating the second term: \[ (a^{334} + 1) - a \cdot (a^{333} + 1) = a^{334} + 1 - a^{334} - a = 1 - a \] Thus, we have: \[ \text{GCD}(a^{333} + 1, 1 - a) \] ### Step 5: Substitute the value of \( a \) Now substituting \( a = 27 \): \[ 1 - a = 1 - 27 = -26 \] So we need to find: \[ \text{GCD}(a^{333} + 1, -26) \] ### Step 6: Calculate \( a^{333} + 1 \) Now we calculate \( a^{333} + 1 \): \[ a^{333} + 1 = 27^{333} + 1 \] We need to check \( 27^{333} + 1 \) modulo 26. ### Step 7: Calculate \( 27 \mod 26 \) Since \( 27 \equiv 1 \mod 26 \): \[ 27^{333} \equiv 1^{333} \equiv 1 \mod 26 \] Thus: \[ 27^{333} + 1 \equiv 1 + 1 \equiv 2 \mod 26 \] ### Step 8: Find the GCD Now we find: \[ \text{GCD}(2, 26) = 2 \] ### Conclusion Therefore, the greatest common divisor of \( (3^3)^{333} + 1 \) and \( (3^3)^{334} + 1 \) is: \[ \boxed{2} \]

To find the greatest common divisor (GCD) of the two expressions \( (3^3)^{333} + 1 \) and \( (3^3)^{334} + 1 \), we can follow these steps: ### Step 1: Rewrite the expressions We start by rewriting the expressions in simpler forms: - Let \( a = 3^3 = 27 \). - Then, we can rewrite the expressions as: - \( a^{333} + 1 \) - \( a^{334} + 1 \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest common divisor of 3^(3^333) + 1and 3^(3^334) + 1 is :

Find HCF of 3^(3^(333))+1 and 3^(3^(334))+1 .

What is the HCF of 20, 250 and 120 ? 20, 250 तथा 120 का महत्तम समापवर्तक (HCF) कितना है?

What is the HCF of 2^3 xx 3^4 and 2^5 xx 3^2 ? 2^3 xx 3^4 तथा 2^5 xx 3^2 का महत्तम समापवर्तक क्या है ?

What is the Highest Common Factor ( H.C.F ) of 7/16, 21/32 and 49/8 ? 7/16, 21/32 तथा 49/8 का महत्तम समापवर्तक ( H.C.F.) कितना है?

The greatest among 4^((1)/(3)),sqrt(3),sqrt(2), and 5^((1)/(3)) is