Home
Class 14
MATHS
If sec theta + tan theta = 2 + sqrt 5 th...

If `sec theta + tan theta = 2 + sqrt 5` then the value of `sin theta + cos theta ` is :
यदि `sec theta + tan theta =2+sqrt5 " हो, तो " sin theta+ cos theta` का मान क्या होगा?

A

A)`sqrt5`

B

B)`7/sqrt5`

C

C)`1/sqrt5`

D

D)`3/sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sec \theta + \tan \theta = 2 + \sqrt{5} \] ### Step 1: Use the identity We know from trigonometric identities that: \[ \sec^2 \theta - \tan^2 \theta = 1 \] This can be factored as: \[ (\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1 \] ### Step 2: Substitute the known value Let \( x = \sec \theta + \tan \theta \). From the problem, we have: \[ x = 2 + \sqrt{5} \] Now, we can find \( \sec \theta - \tan \theta \): \[ \sec \theta - \tan \theta = \frac{1}{\sec \theta + \tan \theta} = \frac{1}{2 + \sqrt{5}} \] ### Step 3: Rationalize the denominator To simplify \( \frac{1}{2 + \sqrt{5}} \), we multiply the numerator and denominator by the conjugate: \[ \sec \theta - \tan \theta = \frac{1 \cdot (2 - \sqrt{5})}{(2 + \sqrt{5})(2 - \sqrt{5})} = \frac{2 - \sqrt{5}}{4 - 5} = 2 - \sqrt{5} \] ### Step 4: Set up the equations Now we have two equations: 1. \( \sec \theta + \tan \theta = 2 + \sqrt{5} \) 2. \( \sec \theta - \tan \theta = 2 - \sqrt{5} \) ### Step 5: Solve for \( \sec \theta \) and \( \tan \theta \) Adding these two equations: \[ (\sec \theta + \tan \theta) + (\sec \theta - \tan \theta) = (2 + \sqrt{5}) + (2 - \sqrt{5}) \] This simplifies to: \[ 2\sec \theta = 4 \implies \sec \theta = 2 \] Now, substituting \( \sec \theta = 2 \) into one of the equations to find \( \tan \theta \): \[ 2 + \tan \theta = 2 + \sqrt{5} \implies \tan \theta = \sqrt{5} \] ### Step 6: Find \( \sin \theta \) and \( \cos \theta \) Using the definitions of secant and tangent: \[ \sec \theta = \frac{1}{\cos \theta} \implies \cos \theta = \frac{1}{\sec \theta} = \frac{1}{2} \] \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \implies \sqrt{5} = \frac{\sin \theta}{\frac{1}{2}} \implies \sin \theta = \sqrt{5} \cdot \frac{1}{2} = \frac{\sqrt{5}}{2} \] ### Step 7: Calculate \( \sin \theta + \cos \theta \) Now, we can find \( \sin \theta + \cos \theta \): \[ \sin \theta + \cos \theta = \frac{\sqrt{5}}{2} + \frac{1}{2} = \frac{\sqrt{5} + 1}{2} \] ### Final Answer Thus, the value of \( \sin \theta + \cos \theta \) is: \[ \frac{\sqrt{5} + 1}{2} \]

To solve the problem, we start with the equation given: \[ \sec \theta + \tan \theta = 2 + \sqrt{5} \] ### Step 1: Use the identity We know from trigonometric identities that: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta + sec theta =4 , the value of sin theta cos theta .

sec theta+tan theta=5 then the value of sin theta+cos theta

If sin theta=4 cos theta , then what is the value of sin theta cos theta ? यदि sin theta=4 cos theta , है, तो sin theta cos theta का मान क्या होगा ?

If sec theta + tan theta = m (>1) , then the value of sin theta is (0^@ यदि sec theta + tan theta = m (>1) हो, तो sin theta का मान ज्ञात कीजिए (0^@ < theta < 90^@)

If tan^4 theta+ tan^2 theta=1 then the value of cos^4 theta+cos^2 theta is यदि tan^4 theta+ tan^2 theta=1 हो, तो cos^4 theta+cos^2 theta का मान क्या होगा?

If sec theta+tan theta= 2+sqrt5 and theta is an acute angle, then the value of sin theta is: यदि sec theta+tan theta= 2+sqrt5 तो sin theta का मान क्या होगा जहाँ theta न्यून कोण है

If sec theta (cos theta + sin theta) = sqrt2 , then what is the value of (2 sin theta)//(cos theta- sin theta) ? यदि sec theta (cos theta + sin theta) = sqrt2 है,तो (2 sin theta)//(cos theta- sin theta) का मान क्या है?

If sec theta ( cos theta + sin theta) = sqrt""2 , then what is the value of (2 sin theta )// (cos theta - sin theta ) ?