Home
Class 14
MATHS
If sin (A – B) =1/2 ? and cos (A + B) = ...

If `sin (A – B) =1/2 ? and cos (A + B) = 1/2 " where " A gt B gt 0 and A + B` is an acute angle, then the value B is.
यदि `sin (A - B) =1/2 " और " cos (A + B) =1/2 " जहाँ " A gt B gt 0 " तथा " A+B` न्यून कोण है, तो B का मान क्या होगा?

A

A)`pi/6`

B

B)`pi/12`

C

C)`pi/4`

D

D)`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( B \) given the equations \( \sin(A - B) = \frac{1}{2} \) and \( \cos(A + B) = \frac{1}{2} \), with the conditions that \( A > B > 0 \) and \( A + B \) is an acute angle. ### Step-by-Step Solution: 1. **Identify the angles for sine and cosine:** - From \( \sin(A - B) = \frac{1}{2} \), we know that \( A - B \) could be \( 30^\circ \) or \( 150^\circ \) (since \( \sin 30^\circ = \frac{1}{2} \) and \( \sin 150^\circ = \frac{1}{2} \)). - From \( \cos(A + B) = \frac{1}{2} \), we know that \( A + B \) could be \( 60^\circ \) or \( 300^\circ \) (since \( \cos 60^\circ = \frac{1}{2} \) and \( \cos 300^\circ = \frac{1}{2} \)). However, since \( A + B \) is an acute angle, we only consider \( 60^\circ \). 2. **Set up the equations:** - From \( A - B = 30^\circ \) (we discard \( 150^\circ \) because \( A > B \) implies \( A - B \) must be positive and less than \( 180^\circ \)). - From \( A + B = 60^\circ \). 3. **Solve the system of equations:** - We now have two equations: \[ A - B = 30^\circ \quad (1) \] \[ A + B = 60^\circ \quad (2) \] - Add equations (1) and (2): \[ (A - B) + (A + B) = 30^\circ + 60^\circ \] \[ 2A = 90^\circ \] \[ A = 45^\circ \] - Now substitute \( A = 45^\circ \) back into equation (2): \[ 45^\circ + B = 60^\circ \] \[ B = 60^\circ - 45^\circ = 15^\circ \] 4. **Convert \( B \) to radians:** - To convert degrees to radians, use the formula: \[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \] - Therefore, \[ B = 15^\circ \times \frac{\pi}{180} = \frac{\pi}{12} \] ### Final Answer: The value of \( B \) is \( \frac{\pi}{12} \).

To solve the problem, we need to find the value of \( B \) given the equations \( \sin(A - B) = \frac{1}{2} \) and \( \cos(A + B) = \frac{1}{2} \), with the conditions that \( A > B > 0 \) and \( A + B \) is an acute angle. ### Step-by-Step Solution: 1. **Identify the angles for sine and cosine:** - From \( \sin(A - B) = \frac{1}{2} \), we know that \( A - B \) could be \( 30^\circ \) or \( 150^\circ \) (since \( \sin 30^\circ = \frac{1}{2} \) and \( \sin 150^\circ = \frac{1}{2} \)). - From \( \cos(A + B) = \frac{1}{2} \), we know that \( A + B \) could be \( 60^\circ \) or \( 300^\circ \) (since \( \cos 60^\circ = \frac{1}{2} \) and \( \cos 300^\circ = \frac{1}{2} \)). However, since \( A + B \) is an acute angle, we only consider \( 60^\circ \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin (A - B) = 1/2 and cos (A + B) = 1/2 where A > B > 0 and A + B is an acute angle, then the value B is

If sin(A-B) =1/2 and cos(A+B) =1/2 , where A>B>0^@ , and A+B is an acute angle, then the value of A is: यदि sin(A-B) =1/2 and cos(A+B) =1/2 तो A+B का मान ज्ञात करें , जहाँ A>B>0^@ और A एक न्यून कोण है

If sin(A-B) =1/2 and cos(A+B) =1/2 , where A>B>0^@ , and A+B is an acute angle, then the value of A is: यदि sin(A-B) =1/2 and cos(A+B) =1/2 तो A+B का मान ज्ञात करें , जहाँ A>B>0^@ और A एक न्यून कोण है

If sin (A + B )=1 and cos(A -B)= frac(sqrt3)(2) , where A gt B.Find the value of B ?

If sin A=(2)/(sqrt(5)) and cos B=(1)/(sqrt(10)), where A and B are acute angles,then what is the value of A+B

If sin(A-B)=(1)/(2) and cos(A+B)=(1)/(2) , 0^(@) lt (A+B) lt 90^(@) and A gt B then find A and B .

If sin(A+B)=1 and cos(A-B)=1 , 0^(@) le (A+B) le 90^(@) and A gt B then find A and B .

If A and B are positive acute angles such that sin (A - B) =1/2 and cos (A + B) = 1/2 , then A and B are given by

If A gt 0 ,B gt 0 and A+B= pi/3 ,then the maximum value of tan A tan B , is