Home
Class 14
MATHS
If a + b + c = 2s then ((s - a)^(2) ...

If ` a + b + c = 2s` then
`((s - a)^(2) + (s - b)^(2) +(s - c)^(2) +s^(2))/(a^(2) + b^(2) + c^(2))` is equal to

A

`a^2 +b^2+c^2`

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

`((s-a)^2 + (s-b)^2 +(s-c)^2 +s^2)/(a^2+b^2+c^2)`
`=((S^2-2as+a^2)+(S^2-b^2-2bs)(S^2+c^2-2sc)+S^2)/(a^2+b^2+c^2)`
`=(4S^2+a^2+b^2+c^2-2s(a+b+c))/(a^2+b^2+c^2)`
`=(4S^2+a^2+b^2+c^2-2s(2S))/(a^2+b^2+c^2)`
`=(a^2+b^2+c^2)/(a^2+b^2+c^2)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2s = a + b + c , then the value of (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 - a^2 - b^2 - c^2 will be :

If (s-a) +(s-b) +(s-c) =s , then the vlaue of ((s-a)^(2) +(s-b)^(2) +(s-c)^(2) +s^(2))/(a^(2) +b^(2)+c^(2)) will be

If 2x=a+b+c , then prove that, (s-a)^(2)+(s-b)^(2) +(s-c)^(2) +s^(2)=a^(2)+b^(2)+c^(2) .

If a + b+ c =2s , thent the value of (s-a)^(2) + (s-b)^(2) +( s-c)^2 will be

If a+b+c=2s, then the value of (s-a)^(2)+(s-b)^(2)+(s-c)^(2)+s^(2) will be s^(2)-a^(2)-b^(2)-c^(2)-c^(2)(b)s^(2)+a^(2)+b^(2)+c^(2)(c)a^(2)+b^(2)+c^(2)(d)4s^(2)-a^(2)-b^(2)-c^(2)

If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

In Delta ABC, a^(2)(s-a)+b^(2)(s-b)+c^(2)(s-c)=