Home
Class 14
MATHS
If a/b + b/a - 1 = 0 then the value of a...

If `a/b + b/a - 1 = 0` then the value of `a^3 + b^3` is.

यदि `a/b + b/a - 1 = 0` हो, तो `a^3 + b^3` का मान है

A

`-1`

B

`3`

C

`0`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
C

`a/b + b/a - 1 = 0`
`implies (a^2 + b^2 -ab)/(ab) = 0`
`implies a^2 + b^2 - ab = 0 " " ....(i)`
`because a^3 + b^3 =(a + b) xx 0 ` (समी. (i) से)
`implies a^3 + b^3 = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b = 8 and ab = 12, then the value of a^3+b^3 is: यदि a + b = 8 और ab = 12 है, तो a^3+b^3 का मान है:

If a + 3b = 12 and ab = 9, then the value of (a - 3b) is: यदि a + 3b = 12 और ab = 9 है, तो (a - 3b) का मान है:

If a^3 + b^3 = 218 and a + b = 2, then the value of ab is : यदि a^3 + b^3 = 218 और a + b = 2 है, तो ab का मान है:

If a + b = 10 and 3/7 of ab=9, then the value of a^3+b^3 is: यदि a + b = 10 और 3/7 of ab=9, है, तो a^3+b^3 का मान:

If x^a.x^b.x^c=1 then the value of a^3+b^3+c^3 is यदि x^a.x^b.x^c=1 , तो a^3+b^3+c^3 का मान है-

If a - b = 4 and a^3-b^3=88 , then find the value of a^2-b^2 . यदि a - b = 4 और a^3-b^3=88 है, तो a^2-b^2 का मान ज्ञात कीजिए।

If a+b+c = 4 and ab + bc + ca = 1, then the value of a^3+b^3+c^3-3abc is: यदि a+b+c = 4 और ab + bc + ca = 1 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?

If (a)/(b)+(b)/(a)=-1(a,b!=0) the value of a^(3)-b^(3) is:

If a+b+c = 9 and ab+bc+ca = -22, then the value of a^3+b^3+c^3-3abc is : यदि a+b+c = 9 तथा ab+bc+ca = -22 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?