Home
Class 14
MATHS
Find the simplest value of 2sqrt(50)+sqr...

Find the simplest value of `2sqrt(50)+sqrt(18)-sqrt(72)` (given `sqrt(2)=1.414` ) .

A

`4.242`

B

`9.898`

C

`10.312`

D

`8.484`

Text Solution

Verified by Experts

The correct Answer is:
B

`2sqrt(50)+sqrt(18)-sqrt(72)`
`2xx5sqrt(2)+3sqrt(2)-6sqrt(2)`
`=13sqrt(2)-6sqrt(2)`
`=7sqrt(2)=7xx1.414`
`=9.898`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt18 + sqrt50 - sqrt32 is

Find the value of sqrt(18)+sqrt(12) , if sqrt(12)=1.414 and sqrt(3)=1.732 . The following are the steps involved in solving the above problem. Arrange that in sequential order. (A) 4.242+3.464=7.706 (B) 3sqrt(2)+2sqrt(3) (C) sqrt(18)+sqrt(12)=sqrt(3^(2)xx2)+sqrt(2^(2)xx3) (D) 3(1.414)+2(1.732)

The value of sqrt( 6 - sqrt( 38-2sqrt(72))) is closest to :