Home
Class 14
MATHS
If sintheta+sin^(2)theta+sin^(3)theta=1,...

If `sintheta+sin^(2)theta+sin^(3)theta=1`, then find the value of `cos^(6)theta-4cos^(4)theta+8cos^(2)theta`.

A

2

B

4

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
B

`sin theta + sin^(2) theta + sin^(3) theta =1`
`implies sin theta + sin^(3) theta = 1 -sin^(2) theta `
`implies sin theta (1 + sin^(2) theta ) = cos^(2)theta `
` implies sin^(2) theta (1 + sin^(2) theta ) = cos^(4) theta ` [वर्ग करने पर ]
`implies (1 - cos^(2) theta ) {1 + (1- cos^(2))}^(2) = cos^(4) theta `
`implies (1 - cos^(2) theta ) {2- cos^(2)}^(2) = cos^(4) theta `
`implies (1- cos^(2) thea ) (4- 4 cos^(2) theta + cos^(4) theta ) = cos^(4) theta `
`implies 4- 4 cos^(2) theta + cos^(4) theta -4 cos^(2) theta + 4 cos^(4) theta - cos^(6) theta = cos^(4) theta `
`implies - cos^(6) theta + 4 cos^(4) theta - 8 cos^(2) theta + 4 =0`
`:. cos^(6) theta - 4 cos^(4) theta - 8 cos^(2) theta =4`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta+sin^(2)theta=1 , then find the value of cos^(2)theta+cos^(4)theta .

If sin theta+sin^(2)theta+sin^(3)theta=1 then value of cos^(6)theta-4cos^(4)theta+8cos^(2)theta is

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If sin theta+sin^(2)theta+sin^(3)theta=1, prove that cos^(6)theta-4cos^(4)theta+8cos^(2)=4

If (sin theta+cos theta)/(sin theta-cos theta)=3, then find the value of sin^(4)theta-cos^(4)theta

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If sin^(8)theta+cos^(8)theta-1=0 then what is the value of cos^(2)theta sin^(2)theta

If sin theta + sin^2 theta =1 , then the value of cos^2 theta + cos^ 4 theta is