Home
Class 14
MATHS
Find the value of 3 sqrt(147)-sqrt((1)/(...

Find the value of `3 sqrt(147)-sqrt((1)/(3))-sqrt((1)/(27))`

`3 sqrt(147)-sqrt((1)/(3))-sqrt((1)/(27))` का मान ज्ञात कीजिए।

A

`(281 sqrt(3))/(9)`

B

`(181 sqrt(3))/(3)`

C

`(185sqrt(3))/(9)`

D

`(381 sqrt(3))/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( 3 \sqrt{147} - \sqrt{\frac{1}{3}} - \sqrt{\frac{1}{27}} \), we will break it down step by step. ### Step 1: Simplify \( \sqrt{147} \) First, we simplify \( \sqrt{147} \): \[ \sqrt{147} = \sqrt{49 \times 3} = \sqrt{49} \times \sqrt{3} = 7\sqrt{3} \] ### Step 2: Substitute back into the expression Now substitute \( \sqrt{147} \) back into the expression: \[ 3 \sqrt{147} = 3 \times 7\sqrt{3} = 21\sqrt{3} \] So, the expression becomes: \[ 21\sqrt{3} - \sqrt{\frac{1}{3}} - \sqrt{\frac{1}{27}} \] ### Step 3: Simplify \( \sqrt{\frac{1}{3}} \) and \( \sqrt{\frac{1}{27}} \) Next, we simplify \( \sqrt{\frac{1}{3}} \): \[ \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} \] Now simplify \( \sqrt{\frac{1}{27}} \): \[ \sqrt{\frac{1}{27}} = \sqrt{\frac{1}{3^3}} = \frac{1}{\sqrt{27}} = \frac{1}{3\sqrt{3}} \] ### Step 4: Rewrite the expression Now we can rewrite the expression: \[ 21\sqrt{3} - \frac{1}{\sqrt{3}} - \frac{1}{3\sqrt{3}} \] ### Step 5: Combine the terms To combine the terms, we need a common denominator. The common denominator for \( \sqrt{3} \) and \( 3\sqrt{3} \) is \( 3\sqrt{3} \). Rewriting each term with the common denominator: - The first term becomes: \[ 21\sqrt{3} = \frac{21\sqrt{3} \times 3}{3} = \frac{63\sqrt{3}}{3} \] - The second term becomes: \[ -\frac{1}{\sqrt{3}} = -\frac{1 \times 3}{3\sqrt{3}} = -\frac{3}{3\sqrt{3}} \] - The third term remains: \[ -\frac{1}{3\sqrt{3}} = -\frac{1}{3\sqrt{3}} \] Now combine these: \[ \frac{63\sqrt{3}}{3} - \frac{3}{3\sqrt{3}} - \frac{1}{3\sqrt{3}} = \frac{63\sqrt{3} - 3 - 1}{3\sqrt{3}} = \frac{63\sqrt{3} - 4}{3\sqrt{3}} \] ### Final Expression Thus, the final value of the expression is: \[ \frac{63\sqrt{3} - 4}{3\sqrt{3}} \]

To find the value of the expression \( 3 \sqrt{147} - \sqrt{\frac{1}{3}} - \sqrt{\frac{1}{27}} \), we will break it down step by step. ### Step 1: Simplify \( \sqrt{147} \) First, we simplify \( \sqrt{147} \): \[ \sqrt{147} = \sqrt{49 \times 3} = \sqrt{49} \times \sqrt{3} = 7\sqrt{3} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1)/((sqrt(4)-sqrt(3)))

Find the value of (1)/(2+sqrt(3))+(1)/(2-sqrt(3))

Find the value of tan^(-1)sqrt(3)-cot^(-1)-sqrt(3)

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

Find the value of (-1+sqrt(-3))^(2)+(-1-sqrt(-3))^(2)

Find the value of (1)/(1+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+...+(1)/(sqrt(23)+sqrt(25))

The value of 3 + (1)/(sqrt(3)) + (1)/(3 + sqrt(3)) +(1)/(sqrt(3)-3) is

sqrt(27)-(9)/(sqrt(3))-root(4)((1)/(9))+root(6)((1)/(27))