Home
Class 14
MATHS
If sin^(3) theta + 2 sin^(2) theta + 3 s...

If `sin^(3) theta + 2 sin^(2) theta + 3 sin theta` expression then
1. Maximum value of this expression is 6 where `theta in R`
2. The value of this expression could not be 0
Which is true in the following option ?
निम्नलिखित व्यंजक से सम्बन्धित कथनों पर विचार कीजिए:
`sin^(3) theta + 2 sin^(2) theta + 3 sin theta`
1. किसी `theta ub R` के लिए इस व्यंजक का अधिकतम मान 6 है।
2. किसी `theta in R` के लिए इस व्यंजक का मान 0 नहीं हो सकता।
उपर्युक्त कथनों में से कौन-सा/ से सही है/हैं?

A

only 1 / केवल 1

B

only 2/ केवल 2

C

both 1 and 2 / दोनों 1 और 2

D

Neither 1 nor 2 / न ही 1 और न ही 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the expression given and evaluate the statements provided. ### Step 1: Define the Expression The expression we are analyzing is: \[ E(\theta) = \sin^3 \theta + 2 \sin^2 \theta + 3 \sin \theta \] ### Step 2: Determine the Range of \(\sin \theta\) The sine function, \(\sin \theta\), has a range of values from \(-1\) to \(1\). Therefore, we will consider the values of \(E(\theta)\) when \(\sin \theta\) takes on these extreme values. ### Step 3: Find the Maximum Value of the Expression To find the maximum value of \(E(\theta)\), we can substitute \(\sin \theta = 1\) (the maximum value of sine): \[ E(90^\circ) = \sin^3(90^\circ) + 2 \sin^2(90^\circ) + 3 \sin(90^\circ) \] Calculating this gives: \[ E(90^\circ) = 1^3 + 2 \cdot 1^2 + 3 \cdot 1 = 1 + 2 + 3 = 6 \] Thus, the maximum value of the expression is \(6\). ### Step 4: Check if the Expression can be Zero Next, we need to check if the expression can equal \(0\). We can substitute \(\sin \theta = 0\): \[ E(0^\circ) = \sin^3(0^\circ) + 2 \sin^2(0^\circ) + 3 \sin(0^\circ) \] Calculating this gives: \[ E(0^\circ) = 0^3 + 2 \cdot 0^2 + 3 \cdot 0 = 0 + 0 + 0 = 0 \] Thus, the expression can indeed equal \(0\). ### Conclusion 1. The first statement is true: The maximum value of the expression is \(6\). 2. The second statement is false: The expression can be \(0\). ### Final Answer The correct option is: **Only statement 1 is true.** ---

To solve the problem step by step, we need to analyze the expression given and evaluate the statements provided. ### Step 1: Define the Expression The expression we are analyzing is: \[ E(\theta) = \sin^3 \theta + 2 \sin^2 \theta + 3 \sin \theta \] ### Step 2: Determine the Range of \(\sin \theta\) The sine function, \(\sin \theta\), has a range of values from \(-1\) to \(1\). Therefore, we will consider the values of \(E(\theta)\) when \(\sin \theta\) takes on these extreme values. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Maximum value of the expression cos theta-sin^(2)theta-2,theta in R , is

Maximum value of the expression cos theta-sin^(2)theta-2,theta in R, is -

Maximum value of the expression cos theta- sin^(2)theta-2,theta in R ,is -

sin^2 theta - 3 sin theta +2=0 will be true if

If 3 sin 2 theta = 2 sin 3 theta and 0 lt theta lt pi , then sin theta =

If 3sin2 theta=2sin3 theta and 0

If cos3 theta+sin3 theta+(2sin2 theta-3)(sin theta-cos theta)>0 then subset of values of theta is

What is the maximum value of sin3 theta cos 2 theta + cos 3 theta sin 2 theta ?