Home
Class 14
MATHS
If sec theta + cos theta =(5)/(2)," wher...

If `sec theta + cos theta =(5)/(2)," where "O lt theta lt (pi)/(2)`, then find the value of `sec theta - cos theta =` ?
यदि `O lt theta lt (pi)/(2)` की स्थिति में `sec theta + cos theta =(5)/(2)` हो, तो s`sec theta - cos theta` का मान कितना होगा?

A

`(3)/(2)`

B

`(2)/(3)`

C

`(1)/(2)`

D

`(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sec \theta - \cos \theta \) given that \( \sec \theta + \cos \theta = \frac{5}{2} \) and \( 0 < \theta < \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sec \theta + \cos \theta = \frac{5}{2} \] 2. **Recall the relationship between secant and cosine:** \[ \sec \theta = \frac{1}{\cos \theta} \] Substitute this into the equation: \[ \frac{1}{\cos \theta} + \cos \theta = \frac{5}{2} \] 3. **Multiply through by \( \cos \theta \) to eliminate the fraction:** \[ 1 + \cos^2 \theta = \frac{5}{2} \cos \theta \] 4. **Rearrange the equation:** \[ 2 + 2\cos^2 \theta = 5\cos \theta \] \[ 2\cos^2 \theta - 5\cos \theta + 2 = 0 \] 5. **Let \( x = \cos \theta \) and rewrite the quadratic equation:** \[ 2x^2 - 5x + 2 = 0 \] 6. **Use the quadratic formula to solve for \( x \):** \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} \] \[ = \frac{5 \pm \sqrt{25 - 16}}{4} = \frac{5 \pm 3}{4} \] 7. **Calculate the two potential solutions:** \[ x_1 = \frac{8}{4} = 2 \quad \text{(not valid since } \cos \theta \leq 1\text{)} \] \[ x_2 = \frac{2}{4} = \frac{1}{2} \] 8. **Since \( \cos \theta = \frac{1}{2} \), find \( \sec \theta \):** \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{1}{2}} = 2 \] 9. **Now calculate \( \sec \theta - \cos \theta \):** \[ \sec \theta - \cos \theta = 2 - \frac{1}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \] ### Final Answer: \[ \sec \theta - \cos \theta = \frac{3}{2} \]

To solve the problem, we need to find the value of \( \sec \theta - \cos \theta \) given that \( \sec \theta + \cos \theta = \frac{5}{2} \) and \( 0 < \theta < \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sec \theta + \cos \theta = \frac{5}{2} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta = - (12)/(13) and pi lt theta lt (3pi)/(2), then the value of sec theta is

If tan 6 theta = cot 2 theta , where 0 lt 6 theta lt ( pi )/(2) , then what is the value off sec 4 theta ?

If sin theta = (5)/(13), 0 lt theta lt (pi)/(2) then find the value of following. cos 2 theta

If sin theta = (5)/(13), 0 lt theta lt (pi)/(2) then find the value of following. cos 3 theta

if 7 cos^(2) theta + 3 sin^2 theta = 4 and 0 lt theta lt (pi)/(2) , then find the value of cot theta

If sin theta + 2 cos theta = 1, where 0 lt theta lt (pi)/(2), then what is 2 sin theta - cos theta equal to ?

If tan theta +cot theta =(4)/(sqrt(3)) , where 0 lt theta lt (pi)/(2) , then sin theta +cos theta is equal to

If sec theta=2cos theta , where (pi/2) lt theta lt pi , then what is the value of theta ?