Home
Class 14
MATHS
If tan theta = tan 30^@ , tan 60^@ and...

If` tan theta = tan 30^@ , tan 60^@ and। theta ` is an acute angle, then `2 theta` is equal to
यदि `tan theta = tan 30^@ , tan 60^@` और एक न्यून कोण है तो 2`theta ` का मान क्या है?

A

`30^@`

B

`45^@`

C

`90^@`

D

`0^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan \theta = \tan 30^\circ \cdot \tan 60^\circ \) and \( \theta \) is an acute angle, we can follow these steps: ### Step 1: Calculate \( \tan 30^\circ \) and \( \tan 60^\circ \) We know: - \( \tan 30^\circ = \frac{1}{\sqrt{3}} \) - \( \tan 60^\circ = \sqrt{3} \) ### Step 2: Substitute the values into the equation Now, substitute these values into the equation: \[ \tan \theta = \tan 30^\circ \cdot \tan 60^\circ = \left(\frac{1}{\sqrt{3}}\right) \cdot \left(\sqrt{3}\right) \] ### Step 3: Simplify the right-hand side When we simplify the right-hand side: \[ \tan \theta = \frac{1}{\sqrt{3}} \cdot \sqrt{3} = 1 \] ### Step 4: Determine the value of \( \theta \) Since \( \tan \theta = 1 \), we find that: \[ \theta = 45^\circ \] This is because the tangent of \( 45^\circ \) is 1. ### Step 5: Calculate \( 2\theta \) Now, we need to find \( 2\theta \): \[ 2\theta = 2 \times 45^\circ = 90^\circ \] ### Final Answer Thus, the value of \( 2\theta \) is \( 90^\circ \). ---

To solve the problem where \( \tan \theta = \tan 30^\circ \cdot \tan 60^\circ \) and \( \theta \) is an acute angle, we can follow these steps: ### Step 1: Calculate \( \tan 30^\circ \) and \( \tan 60^\circ \) We know: - \( \tan 30^\circ = \frac{1}{\sqrt{3}} \) - \( \tan 60^\circ = \sqrt{3} \) ### Step 2: Substitute the values into the equation ...
Promotional Banner