Home
Class 14
MATHS
Simplify: 8 + 3 - ( 5/2xx1/3) of 12/5+4/...

Simplify: 8 + 3 -` ( 5/2xx1/3)` of `12/5+4/3xx3/8`

A

9.5

B

10

C

9

D

19

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 8 + 3 - \left( \frac{5}{2} \times \frac{1}{3} \right) \text{ of } \left( \frac{12}{5} + \frac{4}{3} \times \frac{3}{8} \right) \), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: 1. **Calculate the value of \( 8 + 3 \)**: \[ 8 + 3 = 11 \] **Hint**: Always start by simplifying the addition or subtraction outside the brackets. 2. **Calculate \( \frac{4}{3} \times \frac{3}{8} \)**: \[ \frac{4}{3} \times \frac{3}{8} = \frac{4 \times 3}{3 \times 8} = \frac{12}{24} = \frac{1}{2} \] **Hint**: When multiplying fractions, multiply the numerators together and the denominators together. 3. **Now substitute back into the expression**: \[ 11 - \left( \frac{5}{2} \times \frac{1}{3} \right) \text{ of } \left( \frac{12}{5} + \frac{1}{2} \right) \] 4. **Calculate \( \frac{12}{5} + \frac{1}{2} \)**: - Find a common denominator (which is 10): \[ \frac{12}{5} = \frac{24}{10}, \quad \frac{1}{2} = \frac{5}{10} \] \[ \frac{24}{10} + \frac{5}{10} = \frac{29}{10} \] **Hint**: To add fractions, convert them to have a common denominator. 5. **Calculate \( \frac{5}{2} \times \frac{1}{3} \)**: \[ \frac{5}{2} \times \frac{1}{3} = \frac{5 \times 1}{2 \times 3} = \frac{5}{6} \] **Hint**: Again, multiply the numerators and denominators for fractions. 6. **Now calculate \( \frac{5}{6} \text{ of } \frac{29}{10} \)**: \[ \frac{5}{6} \times \frac{29}{10} = \frac{5 \times 29}{6 \times 10} = \frac{145}{60} \] - Simplifying \( \frac{145}{60} \): \[ \frac{145 \div 5}{60 \div 5} = \frac{29}{12} \] **Hint**: When calculating "of", you multiply the two fractions. 7. **Substitute back into the expression**: \[ 11 - \frac{29}{12} \] 8. **Convert 11 to a fraction with a denominator of 12**: \[ 11 = \frac{132}{12} \] 9. **Now perform the subtraction**: \[ \frac{132}{12} - \frac{29}{12} = \frac{132 - 29}{12} = \frac{103}{12} \] **Hint**: When subtracting fractions, ensure they have the same denominator. 10. **Final Result**: \[ \frac{103}{12} \] ### Final Answer: The simplified expression is \( \frac{103}{12} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: : 1/2 xx 3/4 xx 8/9

Simplify: 4 5/6-2 3/8+3 7/(12)

Simplify: (-18 1/3 xx 2 8/11) -(4 5/7 xx 2 (1/3))

Simplify: 2/3 xx 3/5+5/2 xx 3/5 xx 7/6

Simplify: (1/2 xx 2/3)/(1/2 xx 2/3+3/8 xx 1/3)

15 7/8xx 23 1/5+3 4/5xx 5 1/8=

Simplify : [ ((- 3 )/( 2) xx (4)/(5) ) + ((9)/(5) xx (-10)/( 3)) - ((1)/(2)xx (3)/(4)) ] div [ ((21)/( 9) xx (3)/(7)) +((7)/(8) xx (16)/(14)) ]

Simplify 3.5-2.8xx4-:5.6+1.25

Simplify: (a) 108-:36 of (1)/(4)+(2)/(5)xx3(1)/(4) (b) (2)/(3)xx(5)/(6)+(4)/(9)-(3)/(4)+(2)/(9)xx(5)/(9)-:(2)/(9)