Home
Class 14
MATHS
If a/b=7/9,b/c=3/5, then the value of a:...

If `a/b=7/9,b/c=3/5`, then the value of `a:b:c` is

A

`7:3:15`

B

`21:27:42`

C

`7:9:15`

D

`7:9:5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a:b:c \) given that \( \frac{a}{b} = \frac{7}{9} \) and \( \frac{b}{c} = \frac{3}{5} \), we can follow these steps: ### Step-by-Step Solution: 1. **Express \( a \) in terms of \( b \)**: From the first ratio \( \frac{a}{b} = \frac{7}{9} \), we can express \( a \) as: \[ a = \frac{7}{9}b \] 2. **Express \( b \) in terms of \( c \)**: From the second ratio \( \frac{b}{c} = \frac{3}{5} \), we can express \( b \) as: \[ b = \frac{3}{5}c \] 3. **Substitute \( b \) in the equation for \( a \)**: Now, substitute \( b = \frac{3}{5}c \) into the equation for \( a \): \[ a = \frac{7}{9} \left(\frac{3}{5}c\right) = \frac{7 \times 3}{9 \times 5}c = \frac{21}{45}c \] 4. **Simplify \( a \)**: We can simplify \( \frac{21}{45} \): \[ \frac{21}{45} = \frac{7}{15} \] Thus, we have: \[ a = \frac{7}{15}c \] 5. **Now express \( a, b, c \) in terms of a common variable**: Let \( c = 15k \) for some variable \( k \). Then: \[ b = \frac{3}{5}c = \frac{3}{5}(15k) = 9k \] \[ a = \frac{7}{15}c = \frac{7}{15}(15k) = 7k \] 6. **Write the ratios \( a:b:c \)**: Now we can express the ratios: \[ a:b:c = 7k : 9k : 15k \] Since \( k \) is a common factor, we can simplify this to: \[ a:b:c = 7 : 9 : 15 \] ### Final Result: Thus, the value of \( a:b:c \) is \( 7:9:15 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a/3 = b/5 = c/7 , then value of (a+ b+c)/b will be:

If a : b = 2 : 5, b : c = 4 : 7 and c : d = 9 : 14, then the value of a : b : c : d is : यदि a : b = 2 : 5, b : c = 4 : 7 और c : d = 9 : 14, तो a : b : c : d कितना है ?

If a+b+c = 7 and ab+bc+ac= -6, then the value of a^3+b^3+c^3-3abc is: / यदि a+b+c = 7 तथा ab+bc+ac= -6 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?

If (a-b)=3,(b-c)=5 and (c-a)=1 then the value of (a^(3)+b^(3)+c^(3)-3abc)/(a+b+c) is?

If a+b+c=9 and ab+bc+ca=35, find the value of a^(3)+b^(3)+c^(3)-3abc .

In a Delta ABC,a=5,b=3 and c=7, then the value of 3cos C+7cos B is equal to

If a:b:c=2:3:4backslash and backslash2a-3b+4c=33 then the value of c is 6 b.9 c.12 d.(66)/(7)