Home
Class 14
MATHS
Find the value of 5(1)/(2) - [3(1)/(4) +...

Find the value of `5(1)/(2) - [3(1)/(4) + 6 - 4 div 2]`

A

`-(5)/(4)`

B

`(5)/(4)`

C

`(7)/(4)`

D

`-(7)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(5\frac{1}{2} - \left[3\frac{1}{4} + 6 - 4 \div 2\right]\), we will follow the order of operations (BODMAS/BIDMAS). Let's break it down step by step. ### Step 1: Convert Mixed Numbers to Improper Fractions Convert \(5\frac{1}{2}\) and \(3\frac{1}{4}\) into improper fractions. - \(5\frac{1}{2} = \frac{5 \times 2 + 1}{2} = \frac{10 + 1}{2} = \frac{11}{2}\) - \(3\frac{1}{4} = \frac{3 \times 4 + 1}{4} = \frac{12 + 1}{4} = \frac{13}{4}\) ### Step 2: Rewrite the Expression Now, rewrite the expression using the improper fractions: \[ \frac{11}{2} - \left[\frac{13}{4} + 6 - 4 \div 2\right] \] ### Step 3: Solve the Division Inside the Bracket Calculate \(4 \div 2\): \[ 4 \div 2 = 2 \] ### Step 4: Substitute Back into the Expression Now substitute back into the expression: \[ \frac{11}{2} - \left[\frac{13}{4} + 6 - 2\right] \] ### Step 5: Simplify Inside the Bracket Now simplify the expression inside the bracket: \[ 6 - 2 = 4 \] So, we have: \[ \frac{11}{2} - \left[\frac{13}{4} + 4\right] \] ### Step 6: Convert 4 to a Fraction Convert 4 into a fraction with a denominator of 4: \[ 4 = \frac{4 \times 4}{4} = \frac{16}{4} \] ### Step 7: Add the Fractions Inside the Bracket Now we can add the fractions inside the bracket: \[ \frac{13}{4} + \frac{16}{4} = \frac{29}{4} \] ### Step 8: Substitute Back into the Expression Now substitute this back into the expression: \[ \frac{11}{2} - \frac{29}{4} \] ### Step 9: Find a Common Denominator To subtract these fractions, we need a common denominator. The least common multiple of 2 and 4 is 4. Convert \(\frac{11}{2}\) to a fraction with a denominator of 4: \[ \frac{11}{2} = \frac{11 \times 2}{2 \times 2} = \frac{22}{4} \] ### Step 10: Subtract the Fractions Now we can subtract: \[ \frac{22}{4} - \frac{29}{4} = \frac{22 - 29}{4} = \frac{-7}{4} \] ### Final Answer The value of the expression is: \[ \frac{-7}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 5 5/6 div 3 1/2

Find the value of { ((1)/(3))^(-2) - ((1)/(2))^(-3) } div ((1)/(4))^(-2)

Find the value of   1/2 + 3/4 - 5/6 is

Find the value of 1/4 div 1/2 is :

Find the value of   1/2 + ( -3/4 ) - 5/6 is

Find the value of (-4m)^(3) div (1)/((2m)^(2))

Find the value of [ 8^(-4/3 ) div 2^-2 ]^(1/2)