Home
Class 14
MATHS
If X: Y= 7:5 and Y: Z= 7:11, then what i...

If `X: Y= 7:5 and Y: Z= 7:11`, then what is the ratio of `X: Y : Z` ?

A

`30:35: 49`

B

`49:35:55`

C

`7:5:1`

D

`49:30:55`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio of \(X : Y : Z\) given the ratios \(X : Y = 7 : 5\) and \(Y : Z = 7 : 11\), we can follow these steps: ### Step 1: Write down the given ratios We have: - \(X : Y = 7 : 5\) - \(Y : Z = 7 : 11\) ### Step 2: Express \(Y\) in terms of a common value From the first ratio \(X : Y = 7 : 5\), we can express \(X\) and \(Y\) in terms of a variable \(k\): - Let \(X = 7k\) - Let \(Y = 5k\) ### Step 3: Express \(Z\) in terms of \(Y\) From the second ratio \(Y : Z = 7 : 11\), we can express \(Z\) in terms of \(Y\): - Since \(Y = 5k\), we can set up the ratio: \[ \frac{Y}{Z} = \frac{7}{11} \] Substituting \(Y\): \[ \frac{5k}{Z} = \frac{7}{11} \] ### Step 4: Cross-multiply to find \(Z\) Cross-multiplying gives: \[ 5k \cdot 11 = 7 \cdot Z \] So, \[ Z = \frac{55k}{7} \] ### Step 5: Write the ratios together Now we have: - \(X = 7k\) - \(Y = 5k\) - \(Z = \frac{55k}{7}\) ### Step 6: Find a common denominator To combine these ratios, we can express all terms with a common denominator. The common denominator for \(Z\) is \(7\): - \(X = 7k = \frac{49k}{7}\) - \(Y = 5k = \frac{35k}{7}\) - \(Z = \frac{55k}{7}\) ### Step 7: Combine the ratios Now we can write: \[ X : Y : Z = \frac{49k}{7} : \frac{35k}{7} : \frac{55k}{7} \] This simplifies to: \[ X : Y : Z = 49 : 35 : 55 \] ### Final Answer Thus, the ratio of \(X : Y : Z\) is: \[ \boxed{49 : 35 : 55} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""_(3)^(X)=""_(5)^(Y)=""_(9)^(Z) , then what is the ratio of X:Y:Z ?

If x : y = 5 : 6 and y : z = 3 : 7 , then find x : z.

If 3x-4y+z=7; 2x-z+3y=19 ; x+2y+2z=24 , then what is the value of z ? (a) 4 (b) 5 (c) 6 (d) 8

If (11- 13x)/(x) + (11- 13 y)/(y) + (11- 13 z)/(z) =5, then what is the value of 1/x + 1/y + 1/z ?

If x + y = 5, y + z = 7, z + x = 6, then the value of x, y and z are