Home
Class 14
MATHS
The value of ((7)/(8) div 5(1)/(4) xx 7(...

The value of `((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15))` is equal to `7+k`, where k =

A

`(3)/(5)`

B

`(1)/(5)`

C

`(1)/(20)`

D

`(19)/(20)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression `((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15))`, we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions Convert the mixed numbers into improper fractions: - \(5(1/4) = \frac{21}{4}\) - \(7(1/5) = \frac{36}{5}\) - \(7(1/2) = \frac{15}{2}\) So the expression becomes: \[ \left(\frac{7}{8} \div \frac{21}{4} \times \frac{36}{5} - \frac{3}{20} \text{ of } \frac{2}{3}\right) \div \frac{1}{2} + \left(\frac{3}{5} \times \frac{15}{2} + \frac{2}{3} \div \frac{8}{15}\right) \] ### Step 2: Solve the First Part Calculate the first part: 1. **Division**: \( \frac{7}{8} \div \frac{21}{4} = \frac{7}{8} \times \frac{4}{21} = \frac{28}{168} = \frac{1}{6} \) 2. **Multiplication**: \( \frac{1}{6} \times \frac{36}{5} = \frac{36}{30} = \frac{6}{5} \) 3. **Of**: \( \frac{3}{20} \text{ of } \frac{2}{3} = \frac{3}{20} \times \frac{2}{3} = \frac{1}{10} \) 4. **Subtraction**: \( \frac{6}{5} - \frac{1}{10} = \frac{12}{10} - \frac{1}{10} = \frac{11}{10} \) Now we have: \[ \left(\frac{11}{10}\right) \div \frac{1}{2} = \frac{11}{10} \times 2 = \frac{22}{10} = \frac{11}{5} \] ### Step 3: Solve the Second Part Calculate the second part: 1. **Multiplication**: \( \frac{3}{5} \times \frac{15}{2} = \frac{45}{10} = \frac{9}{2} \) 2. **Division**: \( \frac{2}{3} \div \frac{8}{15} = \frac{2}{3} \times \frac{15}{8} = \frac{30}{24} = \frac{5}{4} \) 3. **Addition**: \( \frac{9}{2} + \frac{5}{4} = \frac{18}{4} + \frac{5}{4} = \frac{23}{4} \) ### Step 4: Combine Both Parts Now, combine both parts: \[ \frac{11}{5} + \frac{23}{4} \] To add these fractions, find a common denominator (which is 20): 1. Convert \( \frac{11}{5} = \frac{44}{20} \) 2. Convert \( \frac{23}{4} = \frac{115}{20} \) Now add: \[ \frac{44}{20} + \frac{115}{20} = \frac{159}{20} \] ### Step 5: Set Equal to \( 7 + k \) We have: \[ \frac{159}{20} = 7 + k \] Convert 7 to a fraction with a denominator of 20: \[ 7 = \frac{140}{20} \] Now, set the equation: \[ \frac{159}{20} = \frac{140}{20} + k \] ### Step 6: Solve for \( k \) Subtract \( \frac{140}{20} \) from both sides: \[ k = \frac{159}{20} - \frac{140}{20} = \frac{19}{20} \] Thus, the value of \( k \) is: \[ \boxed{\frac{19}{20}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of (2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4)) is :

The value of 15(7)/(10)+3(1)/(5) of [5(1)/(8)-(2(1)/(4)+(5)/(3)xx(15)/(14)div(10)/(9) of (3)/(14))] is :