Home
Class 14
MATHS
The value of: 3/8 "of " 4/5 div 1 (1...

The value of:
` 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)`

A

`10 (1)/(4)`

B

`2(1)/(4)`

C

`2 (1)/(2)`

D

`3 (1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression step by step, we will follow the order of operations (BODMAS/BIDMAS rules). ### Given Expression: \[ \frac{3}{8} \text{ of } \frac{4}{5} \div \frac{1}{5} + \frac{3}{7} \text{ of } \frac{7}{12} \div \left(\frac{1}{40} \text{ of } \frac{2}{5}\right) - \frac{3 \frac{2}{3}}{\frac{11}{30} \text{ of } \frac{2}{3}} \] ### Step 1: Solve each "of" operation 1. **Calculate** \(\frac{3}{8} \text{ of } \frac{4}{5}\): \[ \frac{3}{8} \times \frac{4}{5} = \frac{3 \times 4}{8 \times 5} = \frac{12}{40} = \frac{3}{10} \] 2. **Calculate** \(\frac{3}{7} \text{ of } \frac{7}{12}\): \[ \frac{3}{7} \times \frac{7}{12} = \frac{3 \times 7}{7 \times 12} = \frac{3}{12} = \frac{1}{4} \] 3. **Calculate** \(\frac{1}{40} \text{ of } \frac{2}{5}\): \[ \frac{1}{40} \times \frac{2}{5} = \frac{1 \times 2}{40 \times 5} = \frac{2}{200} = \frac{1}{100} \] 4. **Calculate** \(\frac{11}{30} \text{ of } \frac{2}{3}\): \[ \frac{11}{30} \times \frac{2}{3} = \frac{11 \times 2}{30 \times 3} = \frac{22}{90} = \frac{11}{45} \] ### Step 2: Substitute back into the expression Now substituting these values back into the expression: \[ \frac{3}{10} \div \frac{1}{5} + \frac{1}{4} \div \frac{1}{100} - \frac{3 \frac{2}{3}}{\frac{11}{45}} \] ### Step 3: Perform the divisions 1. **Calculate** \(\frac{3}{10} \div \frac{1}{5}\): \[ \frac{3}{10} \times 5 = \frac{15}{10} = \frac{3}{2} \] 2. **Calculate** \(\frac{1}{4} \div \frac{1}{100}\): \[ \frac{1}{4} \times 100 = \frac{100}{4} = 25 \] 3. **Convert** \(3 \frac{2}{3}\) to an improper fraction: \[ 3 \frac{2}{3} = \frac{11}{3} \] Now calculate \(\frac{11}{3} \div \frac{11}{45}\): \[ \frac{11}{3} \times \frac{45}{11} = \frac{45}{3} = 15 \] ### Step 4: Substitute back into the expression Now substituting these results back into the expression: \[ \frac{3}{2} + 25 - 15 \] ### Step 5: Perform the addition and subtraction 1. **Calculate** \(\frac{3}{2} + 25\): \[ 25 = \frac{50}{2} \quad \Rightarrow \quad \frac{3}{2} + \frac{50}{2} = \frac{53}{2} \] 2. **Calculate** \(\frac{53}{2} - 15\): \[ 15 = \frac{30}{2} \quad \Rightarrow \quad \frac{53}{2} - \frac{30}{2} = \frac{23}{2} \] ### Final Result The final result is: \[ \frac{23}{2} \text{ or } 11 \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

The value of 5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) of 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)

The value of (5 (1)/(9) - 7 (7)/(8)div9 (9)/(20)) xx (9)/(11)- (5(1)/(4) div (3)/(7) " of " (1)/(4) xx (2)/(7)) div 4 (2)/(3) + 1 (3)/(4) is (a) 2(1)/(4) (b) 2(1)/(3) (c) 3(1)/(4) (d) 4(1)/(2)

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

The value of: [(5/7 " of " 1 (3)/(8) " of " 6/7)] div [1-(1)/(7) xx ( 5/12 +(1)/(3)) ] xx ((1)/(7) -(1)/(9))/((1)/(7) +(1)/(9))

What is the value of [22^((3)/(4)) div (14)/(3) " of " (8-(1)/(5) + 4-2 div (1)/(2))] ?