Home
Class 14
MATHS
If m = 9 and n = (1)/(3)m, then sqrt((m)...

If m = 9 and `n = (1)/(3)m`, then `sqrt((m)^(2) - (n)^(2) = ?)`

A

`2sqrt(2)`

B

`6sqrt(2)`

C

`4sqrt(2)`

D

`5 sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given values: 1. **Given Values**: - \( m = 9 \) - \( n = \frac{1}{3}m \) 2. **Calculate \( n \)**: - Substitute \( m \) into the equation for \( n \): \[ n = \frac{1}{3} \times 9 = 3 \] 3. **Set Up the Expression**: - We need to find \( \sqrt{m^2 - n^2} \). - Substitute the values of \( m \) and \( n \): \[ \sqrt{m^2 - n^2} = \sqrt{9^2 - 3^2} \] 4. **Calculate \( m^2 \) and \( n^2 \)**: - Calculate \( m^2 \): \[ m^2 = 9^2 = 81 \] - Calculate \( n^2 \): \[ n^2 = 3^2 = 9 \] 5. **Substitute Back into the Expression**: - Now substitute \( m^2 \) and \( n^2 \) into the square root expression: \[ \sqrt{81 - 9} \] 6. **Perform the Subtraction**: - Calculate \( 81 - 9 \): \[ 81 - 9 = 72 \] 7. **Calculate the Square Root**: - Now we need to find \( \sqrt{72} \). - Factor \( 72 \): \[ 72 = 36 \times 2 \] - Taking the square root: \[ \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2} \] 8. **Final Answer**: - Therefore, the final answer is: \[ \sqrt{m^2 - n^2} = 6\sqrt{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If m=(1)/(3-2sqrt(2)) and n=(1)/(3+2sqrt(2)) find :(1)m^(2)(2)n^(2)(3)mn

If (m+n)/(m-n)=7/3 then (m^2-n^2)/(m^2+n^2)=

If sin A+cos A=m and sin^(3)A+cos^(3)A=n then (1)m^(3)-3m+n=0 (2) n^(3)-3n+ 2m=0(3)m^(3)-3m+2n=0 (4) m3+3m+2n=0

Find the values of m and n if: 4^(2m)=(3sqrt(16))^(-(6)/(n))=(sqrt(8))^(2)

The distance between the points (m,-n) and (-m,n) is (A) sqrt(m^2 + n^2) (B) m+n (C) 2 sqrt(m^2+n^2) (D) sqrt(2m^2 +2n^2)