Home
Class 14
MATHS
2(1)/(5) x^(2) = 2750, find the value of...

`2(1)/(5) x^(2) = 2750`, find the value of x ?

A

25

B

`25sqrt(3)`

C

`25sqrt(2)`

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{2}{5} x^2 = 2750 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \frac{2}{5} x^2 = 2750 \] ### Step 2: Eliminate the fraction To eliminate the fraction, we can multiply both sides of the equation by 5: \[ 2 x^2 = 2750 \times 5 \] ### Step 3: Calculate the right side Now, we calculate \( 2750 \times 5 \): \[ 2750 \times 5 = 13750 \] So the equation becomes: \[ 2 x^2 = 13750 \] ### Step 4: Divide by 2 Next, we divide both sides by 2 to isolate \( x^2 \): \[ x^2 = \frac{13750}{2} \] ### Step 5: Calculate the division Now, we calculate \( \frac{13750}{2} \): \[ \frac{13750}{2} = 6875 \] Thus, we have: \[ x^2 = 6875 \] ### Step 6: Take the square root To find \( x \), we take the square root of both sides: \[ x = \sqrt{6875} \] ### Step 7: Simplify the square root We can simplify \( \sqrt{6875} \): \[ 6875 = 25 \times 275 = 25 \times 25 \times 11 = 625 \times 11 \] Thus: \[ x = 25 \sqrt{11} \] ### Final Answer So the value of \( x \) is: \[ x = 25 \sqrt{11} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

X :8::2:5 find the value of x

Find the value of x : -1/5 = 2/x

If x - (1)/(x) = 5 , then find the value of x^(2) + (1)/(x^(2)) .

If (x - (1)/(x)) = 5 , find the value of (x^(2) + (1)/(x^(2)))

If 5 ^(2x +1) div 25 = 125, find the value of x .

If 5^(2x+1)-:25=125 find the value of x

If x + (1)/(x) = 5 find the values of (i) x^(2) + (1)/(x^(2)) and (ii) x^(4) + (1)/(x^(4))

If 2^(x-1)+2^(x+1)=2560 , find the value of x.