Home
Class 12
MATHS
If S=7/5+9/5^2+13/5^3+ . . . . then find...

If `S=7/5+9/5^2+13/5^3+ . . . .` then find value of 160S

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( S = \frac{7}{5} + \frac{9}{5^2} + \frac{13}{5^3} + \ldots \), we will first express \( S \) in a more manageable form and then find its value step by step. ### Step 1: Identify the series The series can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{a_n}{5^n} \] where \( a_n \) is the sequence of numerators. Observing the numerators: - For \( n=1 \), \( a_1 = 7 \) - For \( n=2 \), \( a_2 = 9 \) - For \( n=3 \), \( a_3 = 13 \) The pattern shows that \( a_n = 4 + 2n \). ### Step 2: Rewrite \( S \) Now we can express \( S \) as: \[ S = \sum_{n=1}^{\infty} \frac{4 + 2n}{5^n} = \sum_{n=1}^{\infty} \frac{4}{5^n} + \sum_{n=1}^{\infty} \frac{2n}{5^n} \] ### Step 3: Calculate the first sum The first sum is a geometric series: \[ \sum_{n=1}^{\infty} \frac{4}{5^n} = 4 \sum_{n=1}^{\infty} \left(\frac{1}{5}\right)^n = 4 \cdot \frac{\frac{1}{5}}{1 - \frac{1}{5}} = 4 \cdot \frac{\frac{1}{5}}{\frac{4}{5}} = 4 \cdot \frac{1}{4} = 1 \] ### Step 4: Calculate the second sum For the second sum, we use the formula for the sum of \( n x^n \): \[ \sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2} \] Setting \( x = \frac{1}{5} \): \[ \sum_{n=1}^{\infty} n \left(\frac{1}{5}\right)^n = \frac{\frac{1}{5}}{\left(1 - \frac{1}{5}\right)^2} = \frac{\frac{1}{5}}{\left(\frac{4}{5}\right)^2} = \frac{\frac{1}{5}}{\frac{16}{25}} = \frac{25}{80} = \frac{5}{16} \] Thus, \[ \sum_{n=1}^{\infty} \frac{2n}{5^n} = 2 \cdot \frac{5}{16} = \frac{10}{16} = \frac{5}{8} \] ### Step 5: Combine the results Now we can combine both sums: \[ S = 1 + \frac{5}{8} = \frac{8}{8} + \frac{5}{8} = \frac{13}{8} \] ### Step 6: Find \( 160S \) Now we need to find \( 160S \): \[ 160S = 160 \cdot \frac{13}{8} = 20 \cdot 13 = 260 \] ### Final Answer Thus, the value of \( 160S \) is: \[ \boxed{260} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = ( 3/5 )^-2 ÷ ( 7/5 )^0 , find the value of a^-3

If =(5)/(13)+(55)/((13)^(2))+(555)/((13)^(2))+(555)/((13)^(3))++ up to oo, then find the value of 36S .

In triangle ABC, if b=3, cos A=3/5 and cos B=5/13 then find the value of (5c)/2

If alpha=(5)/(2!3)+(5.7)/(3!3^(2))+(5.7.9)/(4!3^(3)),.... then find the value of alpha^(2)+4 alpha

If S=(1)/(1xx3xx5)+(1)/(3xx5xx7)+(1)/(5xx7xx9)+... to infinity, then find the value of [36S], where [.] represents the greatest integer function.

If 9 + 7 = 58, 3 + 11 = 124 What is the value of 13 + 5 ?

If A={1,2,3,4,5} and B={1,3,5,7,9} then find the value of (A-B)uu(B-A)