Home
Class 12
MATHS
lim(x to pi/4)(tan^3x-tanx)/(cos(pi/4+x)...

`lim_(x to pi/4)(tan^3x-tanx)/(cos(pi/4+x))=alpha and lim_(x to 0)(cosx)^cotx=beta` .If `alpha and beta` are the roots of equation `ax^2+bx-4` then ordered pair (a,b) is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate two limits, \(\alpha\) and \(\beta\), and then find the ordered pair \((a, b)\) such that \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(ax^2 + bx - 4 = 0\). ### Step 1: Calculate \(\alpha = \lim_{x \to \frac{\pi}{4}} \frac{\tan^3 x - \tan x}{\cos\left(\frac{\pi}{4} + x\right)}\) 1. **Substituting \(x = \frac{\pi}{4}\)**: - We find that \(\tan\left(\frac{\pi}{4}\right) = 1\). - Thus, the numerator becomes \(\tan^3\left(\frac{\pi}{4}\right) - \tan\left(\frac{\pi}{4}\right) = 1^3 - 1 = 0\). - The denominator becomes \(\cos\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{2}\right) = 0\). - This gives us the indeterminate form \(\frac{0}{0}\). 2. **Applying L'Hôpital's Rule**: - Differentiate the numerator: \(\frac{d}{dx}(\tan^3 x - \tan x) = 3\tan^2 x \sec^2 x - \sec^2 x\). - Differentiate the denominator: \(\frac{d}{dx}(\cos(\frac{\pi}{4} + x)) = -\sin(\frac{\pi}{4} + x)\). 3. **Re-evaluate the limit**: \[ \alpha = \lim_{x \to \frac{\pi}{4}} \frac{3\tan^2 x \sec^2 x - \sec^2 x}{-\sin\left(\frac{\pi}{4} + x\right)} \] - Substitute \(x = \frac{\pi}{4}\): \[ = \frac{3(1^2)(\sqrt{2})^2 - (\sqrt{2})^2}{-\sin\left(\frac{\pi}{2}\right)} = \frac{3 \cdot 2 - 2}{-1} = \frac{6 - 2}{-1} = \frac{4}{-1} = -4 \] - Thus, \(\alpha = -4\). ### Step 2: Calculate \(\beta = \lim_{x \to 0} (\cos x)^{\cot x}\) 1. **Substituting \(x = 0\)**: - We find that \(\cos(0) = 1\) and \(\cot(0) = \infty\). - This gives us the indeterminate form \(1^\infty\). 2. **Using the exponential limit**: \[ \beta = e^{\lim_{x \to 0} (\cos x - 1) \cot x} \] - We know \(\cot x = \frac{\cos x}{\sin x}\), so: \[ \beta = e^{\lim_{x \to 0} (\cos x - 1) \frac{\cos x}{\sin x}} \] - Using the limit \(\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}\): \[ \beta = e^{\lim_{x \to 0} \frac{-(\cos x - 1)}{x^2} \cdot x} = e^{\lim_{x \to 0} -\frac{1}{2} \cdot 1} = e^{0} = 1 \] - Thus, \(\beta = 1\). ### Step 3: Find the ordered pair \((a, b)\) 1. **Roots of the quadratic equation**: - The roots are \(\alpha = -4\) and \(\beta = 1\). - The sum of the roots \(\alpha + \beta = -4 + 1 = -3\). - The product of the roots \(\alpha \beta = -4 \cdot 1 = -4\). 2. **Forming the quadratic equation**: - The quadratic equation can be expressed as: \[ x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \] - This gives: \[ x^2 + 3x - 4 = 0 \] 3. **Identifying coefficients**: - Comparing with \(ax^2 + bx - 4\): - \(a = 1\) - \(b = 3\) ### Final Answer The ordered pair \((a, b)\) is \((1, 3)\).
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

If alpha and beta are the roots of the equation x^(2)-x+3=0 then alpha^(4)+beta^(4)=

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

If alpha and beta are the roots of the equation x^(2)+3x-2(x+7)=0 then the values of alpha^(4)+beta^(4) is

If alpha and beta are roots of the equation x^(2)+x-3=0 then value of alpha^(3)-4 beta^(2)+24 is

If alpha and beta are the roots of the equation 4x^(2)+3x+7=0, then (1)/(alpha)+(1)/(beta)=

If alpha and beta are the roots of the equation x^(2)-2x+4=0 Then 2^(n+1)cos backslash(n pi)/(3) is equal to

If alpha and beta are the roots of the equation ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=