Home
Class 12
MATHS
If [x] denotes GIF , then value of pi^2 ...

If [x] denotes GIF , then value of `pi^2 int_0^2 sin(pi/2x)(x-[x])^[[x]]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral \( \pi^2 \int_0^2 \sin\left(\frac{\pi}{2} x\right) (x - [x])^{[x]} \, dx \), where \([x]\) denotes the greatest integer function (GIF), we can break the integral into two parts based on the intervals defined by the GIF. ### Step-by-Step Solution: 1. **Split the Integral**: Since the greatest integer function \([x]\) changes at integer values, we split the integral from \(0\) to \(2\) into two parts: \[ \int_0^2 \sin\left(\frac{\pi}{2} x\right) (x - [x])^{[x]} \, dx = \int_0^1 \sin\left(\frac{\pi}{2} x\right) (x - [x])^{[x]} \, dx + \int_1^2 \sin\left(\frac{\pi}{2} x\right) (x - [x])^{[x]} \, dx \] 2. **Evaluate the First Integral**: For \(x\) in the interval \([0, 1)\), \([x] = 0\). Thus, \((x - [x])^{[x]} = (x - 0)^0 = 1\). \[ \int_0^1 \sin\left(\frac{\pi}{2} x\right) \cdot 1 \, dx = \int_0^1 \sin\left(\frac{\pi}{2} x\right) \, dx \] The integral of \(\sin(kx)\) is \(-\frac{1}{k} \cos(kx)\). Therefore: \[ \int_0^1 \sin\left(\frac{\pi}{2} x\right) \, dx = -\frac{2}{\pi} \left[\cos\left(\frac{\pi}{2} x\right)\right]_0^1 = -\frac{2}{\pi} \left(\cos\left(\frac{\pi}{2}\right) - \cos(0)\right) = -\frac{2}{\pi} (0 - 1) = \frac{2}{\pi} \] 3. **Evaluate the Second Integral**: For \(x\) in the interval \([1, 2)\), \([x] = 1\). Thus, \((x - [x])^{[x]} = (x - 1)^1 = x - 1\). \[ \int_1^2 \sin\left(\frac{\pi}{2} x\right) (x - 1) \, dx \] We can use integration by parts here. Let \(u = x - 1\) and \(dv = \sin\left(\frac{\pi}{2} x\right) dx\). Then \(du = dx\) and \(v = -\frac{2}{\pi} \cos\left(\frac{\pi}{2} x\right)\). \[ \int (x - 1) \sin\left(\frac{\pi}{2} x\right) \, dx = \left(-\frac{2}{\pi} (x - 1) \cos\left(\frac{\pi}{2} x\right)\right) \bigg|_1^2 + \frac{2}{\pi} \int \cos\left(\frac{\pi}{2} x\right) \, dx \] Evaluating the boundary terms: \[ -\frac{2}{\pi} \left[(2 - 1) \cos(\pi) - (1 - 1) \cos\left(\frac{\pi}{2}\right)\right] = -\frac{2}{\pi} \left[1 \cdot (-1) - 0\right] = \frac{2}{\pi} \] Now, integrating \(\cos\left(\frac{\pi}{2} x\right)\): \[ \int \cos\left(\frac{\pi}{2} x\right) \, dx = \frac{2}{\pi} \sin\left(\frac{\pi}{2} x\right) + C \] Thus: \[ \frac{2}{\pi} \left[\frac{2}{\pi} \sin\left(\frac{\pi}{2} x\right)\right] \bigg|_1^2 = \frac{4}{\pi^2} \left[\sin(\pi) - \sin\left(\frac{\pi}{2}\right)\right] = \frac{4}{\pi^2} \left[0 - 1\right] = -\frac{4}{\pi^2} \] 4. **Combine the Results**: Now, we can combine the results of both integrals: \[ \int_0^2 \sin\left(\frac{\pi}{2} x\right) (x - [x])^{[x]} \, dx = \frac{2}{\pi} + \left(\frac{2}{\pi} - \frac{4}{\pi^2}\right) = \frac{4}{\pi} - \frac{4}{\pi^2} \] 5. **Final Calculation**: Finally, multiplying by \(\pi^2\): \[ \pi^2 \left(\frac{4}{\pi} - \frac{4}{\pi^2}\right) = 4\pi - 4 = 4(\pi - 1) \] ### Final Answer: \[ \text{The value of } \pi^2 \int_0^2 \sin\left(\frac{\pi}{2} x\right) (x - [x])^{[x]} \, dx = 4(\pi - 1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

The value of int_(0)^(2 pi)|cos x-sin x|dx is

What is the value of int_0^(pi//2) sin 2x ln (cot x) dx

Find the value of int_0^(2pi) (xsin^8 x)/(sin^8 x + cos^8 x)dx

If f(x)=x+sin x and I denotes the value of integral int_(pi)^(2 pi)((f^(-1))(x)+sin x)dx then the value of [(2I)/(3)]( where [-] denotes greatest integer function)

If [x] denotes the integral part of x and a=int_(-1)^0 (sin^2x)/([x/pi]+1/2)dx, b=int_0^1 (sin^2x)/([x/pi]+1/2)d (x-[x]) , then (A) a=b (B) a=-b (C) a=2b (D) none of these

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_0^(pi/2) sin x sin 2x dx