Home
Class 12
MATHS
32^(tan^2x)+32^(Sec^2x)=81. Find number ...

`32^(tan^2x)+32^(Sec^2x)=81`. Find number of solution if `0 le x le pi/4`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 32^{\tan^2 x} + 32^{\sec^2 x} = 81 \) for the interval \( 0 \leq x \leq \frac{\pi}{4} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 32^{\tan^2 x} + 32^{\sec^2 x} = 81 \] Using the identity \( \sec^2 x = 1 + \tan^2 x \), we can rewrite \( 32^{\sec^2 x} \): \[ 32^{\sec^2 x} = 32^{1 + \tan^2 x} = 32 \cdot 32^{\tan^2 x} \] Substituting this back into the equation gives: \[ 32^{\tan^2 x} + 32 \cdot 32^{\tan^2 x} = 81 \] ### Step 2: Factor the equation We can factor out \( 32^{\tan^2 x} \): \[ 32^{\tan^2 x} (1 + 32) = 81 \] This simplifies to: \[ 32^{\tan^2 x} \cdot 33 = 81 \] ### Step 3: Isolate \( 32^{\tan^2 x} \) Now, we isolate \( 32^{\tan^2 x} \): \[ 32^{\tan^2 x} = \frac{81}{33} \] Calculating the right-hand side: \[ 32^{\tan^2 x} = \frac{81}{33} \approx 2.4545 \] ### Step 4: Take the logarithm Next, we take the logarithm (base 32) of both sides: \[ \tan^2 x = \log_{32}\left(\frac{81}{33}\right) \] Using the change of base formula, we can express this as: \[ \tan^2 x = \frac{\log\left(\frac{81}{33}\right)}{\log(32)} \] ### Step 5: Calculate the value Calculating the logarithm: \[ \log_{32}\left(\frac{81}{33}\right) \approx 0.25855 \] Thus, we have: \[ \tan^2 x \approx 0.25855 \] ### Step 6: Find \( \tan x \) Taking the square root: \[ \tan x \approx \sqrt{0.25855} \approx 0.5085 \] ### Step 7: Determine the solutions Now, we need to find the number of solutions for \( \tan x = 0.5085 \) in the interval \( 0 \leq x \leq \frac{\pi}{4} \). The function \( \tan x \) is increasing in this interval. ### Conclusion Since \( \tan x \) is a continuous and increasing function in the interval \( [0, \frac{\pi}{4}] \), there will be exactly one solution for \( \tan x = 0.5085 \). Thus, the number of solutions is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

Find the number of solutions of |cos x|=sin x , 0 le x le 4 pi

Find the number of solution of tan x + sec x =2 cos x in [0,2pi]

The number of solutions of 2 cosx=|sinx|, 0 le x le 4 pi, is

Find the number of solutions of cos x =|1+ sin x |, 0 le x le 3 pi

The number of solutions of the equation 32^(tan^(2)x) + 32^(sec^(2)x) = 81, 0 le x le (pi)/(4) is :