Home
Class 12
MATHS
If alpha+beta+gamma=2pi and x+(cosbeta...

If `alpha+beta+gamma=2pi` and
`x+(cosbeta)y+(cosgamma)z=0`,
`(cosbeta)x+y+(cos alpha)z=0`
`(cosgamma)x+(cos alpha)y+z=0` then no. of solutions are

A

Unique

B

Infinite

C

No solution

D

Exactly 2

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha + beta + gamma = 2pi , then the system of equations x + (cos gamma)y + (cos beta)z = 0 (cos gamma) x + y + (cos alpha)z = 0 (cos beta )x + (cos alpha)y + z = 0 has :

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

If alpha+beta+gamma=2pi , prove that : cos^2 alpha + cos^2 beta + cos^2 gamma-2cosalpha cosbeta cosgamma=1 .

If 0

If alpha,beta and gamma are such that alpha+beta+gamma=0, then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

If sinalpha+sinbeta+singamma=cosalpha+cosbeta+cosgamma=0 then prove that cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma)

The value of alpha for which the system of linear equations: x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,-x+(sin alpha)y+(-cos alpha)z=0 has a non - trivial solution could be