Home
Class 12
MATHS
The negation of the statement (p vv q) i...

The negation of the statement `(p vv q) implies (q vvr)`

A

`p wedge q wedge r`

B

`p wedge q wedge ~r`

C

`p wedge ~q wedge ~r`

D

`~p wedge q wedge r`

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the statement \((p \lor q) \implies (q \lor r)\), we can follow these steps: ### Step 1: Understand the implication The statement \((p \lor q) \implies (q \lor r)\) can be rewritten using the definition of implication. An implication \(A \implies B\) is logically equivalent to \(\neg A \lor B\). Therefore, we can rewrite the statement as: \[ \neg(p \lor q) \lor (q \lor r) \] ### Step 2: Negate the entire statement To find the negation of the statement, we apply negation to the entire expression: \[ \neg(\neg(p \lor q) \lor (q \lor r)) \] ### Step 3: Apply De Morgan's Law Using De Morgan's Law, we know that \(\neg(A \lor B) = \neg A \land \neg B\). Thus, we can apply this to our expression: \[ \neg(\neg(p \lor q)) \land \neg(q \lor r) \] ### Step 4: Simplify the negation The negation of \(\neg(p \lor q)\) simplifies to \(p \lor q\). The negation of \((q \lor r)\) can also be simplified using De Morgan's Law: \[ \neg(q \lor r) = \neg q \land \neg r \] So our expression now looks like: \[ (p \lor q) \land (\neg q \land \neg r) \] ### Step 5: Combine the expressions We can combine the expressions: \[ (p \lor q) \land \neg q \land \neg r \] ### Step 6: Distribute the conjunction Distributing the conjunction gives us: \[ (p \land \neg q \land \neg r) \lor (q \land \neg q \land \neg r) \] However, \(q \land \neg q\) is always false, so we can ignore that part: \[ p \land \neg q \land \neg r \] ### Final Result Thus, the negation of the statement \((p \lor q) \implies (q \lor r)\) is: \[ p \land \neg q \land \neg r \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The statement p vv q is

"The negation of the statement= " (p vv q)^^ r is

Negation of the statement p implies (~q ^^r) is

The negative of the statement ~p vv (p ^^ q) is

Negation of the statement (p vv r) rArr (q vv r) is :

The negation of the statement (~pvv~q)vv(p^^~q) is

Negation of the statement ~ p to (q vv r) is

Negation of the statement p rarr(p vv sim q) is

Negation of the statement p to ( q ^^ r) is

The statement (p ^^q) implies ~p is a