Home
Class 12
MATHS
int (sinx)/(sin^3x+cos^3x)dx=alphalnabs(...

`int (sinx)/(sin^3x+cos^3x)dx=alphalnabs(1+tanx) + beta lnabs(1-tanx+tan^2x)+gammatan^-1((2tan^-1-1)/sqrt3)+c` then find `18(alpha+beta+gamma^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\sin^3 x + \cos^3 x} \, dx \), we will follow a series of steps to simplify the expression and find the coefficients \( \alpha \), \( \beta \), and \( \gamma \). ### Step 1: Simplify the Integral We start with the integral: \[ \int \frac{\sin x}{\sin^3 x + \cos^3 x} \, dx \] We can factor the denominator using the identity for the sum of cubes: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x) \] ### Step 2: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{\sin x}{(\sin x + \cos x)(1 - \sin x \cos x)} \, dx \] Next, we divide both the numerator and denominator by \( \cos^3 x \): \[ = \int \frac{\tan x}{\tan^3 x + 1} \sec^2 x \, dx \] Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \): \[ = \int \frac{t}{t^3 + 1} \, dt \] ### Step 3: Partial Fraction Decomposition We can decompose \( \frac{t}{t^3 + 1} \): \[ t^3 + 1 = (t + 1)(t^2 - t + 1) \] Thus, \[ \frac{t}{t^3 + 1} = \frac{A}{t + 1} + \frac{Bt + C}{t^2 - t + 1} \] Multiplying through by \( t^3 + 1 \) and equating coefficients will allow us to find \( A \), \( B \), and \( C \). ### Step 4: Solve for Coefficients From the equation: \[ t = A(t^2 - t + 1) + (Bt + C)(t + 1) \] We can expand and collect like terms to find the coefficients \( A \), \( B \), and \( C \). 1. Coefficient of \( t^2 \): \( A + B = 0 \) 2. Coefficient of \( t \): \( -A + B + C = 1 \) 3. Constant term: \( A + C = 0 \) Solving these equations gives us: - From \( A + B = 0 \), we have \( B = -A \). - Substituting \( B \) into the second equation gives us \( -A - A + C = 1 \) or \( C = 2A + 1 \). - Substituting \( C \) into the third equation gives \( A + (2A + 1) = 0 \) leading to \( 3A + 1 = 0 \) or \( A = -\frac{1}{3} \). Thus: - \( A = -\frac{1}{3} \) - \( B = \frac{1}{3} \) - \( C = \frac{1}{3} \) ### Step 5: Integrate Each Term Now we can integrate: \[ \int \left( -\frac{1}{3} \frac{1}{t + 1} + \frac{1/3 t + 1/3}{t^2 - t + 1} \right) dt \] This results in: \[ -\frac{1}{3} \ln |t + 1| + \frac{1}{3} \ln |t^2 - t + 1| + \frac{1}{3} \tan^{-1}(2t - 1) \] ### Step 6: Substitute Back Substituting back \( t = \tan x \): \[ -\frac{1}{3} \ln |1 + \tan x| + \frac{1}{3} \ln |1 - \tan x + \tan^2 x| + \frac{1}{3} \tan^{-1}\left(\frac{2\tan x - 1}{\sqrt{3}}\right) + C \] ### Step 7: Identify Coefficients From the integral, we identify: - \( \alpha = -\frac{1}{3} \) - \( \beta = \frac{1}{3} \) - \( \gamma = \frac{1}{\sqrt{3}} \) ### Step 8: Calculate \( 18(\alpha + \beta + \gamma^2) \) Now we compute: \[ \alpha + \beta + \gamma^2 = -\frac{1}{3} + \frac{1}{3} + \left(\frac{1}{\sqrt{3}}\right)^2 = 0 + \frac{1}{3} = \frac{1}{3} \] Thus, \[ 18(\alpha + \beta + \gamma^2) = 18 \cdot \frac{1}{3} = 6 \] ### Final Answer The final answer is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(sin x)/(sin^(3)x + cos^(3)x) dx = alpha log_(e)|1 + tan x| + beta log_(e)|1-tan x + tan^(2)x| + gamma tan^(-1)((2 tan x - 1)/(sqrt(3))) + C , when C is constant of integration, then the value of 18(alpha+ beta + gamma^(2)) is __________.

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

If alpha = tan^(-1) ((xsqrt(3))/(2y - x)) and beta = tan^(-1) ((2x - y)/(ysqrt(3))) evaluate : alpha - beta .

If tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha + 2tan ^ (2) alpha tan ^ (2 ) beta tan ^ (2) gamma = 1 then sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma =

inte^(x)(1+tanx+tan^(2)x)dx=

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

int_0^10([sin2pix])/e^(-[x]+x)dx=alphae^(-1)+betae^(-1/2)+gamma . then find alpha+beta+gamma

int(1)/(1+3cos^(2)x)dx=(1)/(2)tan^(-1)((tan x)/(2))+c

If int(dx)/(cos2x+3sin^(2)x)=(1)/(a)tan^(-1)(b tanx)+c, then ab=

If alpha=sin^(-1)(cos(sin^(-1)x)) and beta=cos^(-1)(sin(cos^(-1)x)) then find tan alpha.tan beta