Home
Class 12
MATHS
If f(x)=sin^-1((3x^2+x-1)/(x-1)^2)+cos^-...

If `f(x)=sin^-1((3x^2+x-1)/(x-1)^2)+cos^-1((x-1)/(x+1))` then the domain of `f(x)` is

A

`[1/4,1/2]`

B

`[1/4,1/2]uu{0}`

C

`(1/4,1/2)`

D

`(0,1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \sin^{-1}\left(\frac{3x^2 + x - 1}{(x - 1)^2}\right) + \cos^{-1}\left(\frac{x - 1}{x + 1}\right), \] we need to ensure that the arguments of both the inverse sine and inverse cosine functions are within their respective domains. ### Step 1: Determine the domain for \(\sin^{-1}\) The argument of \(\sin^{-1}\) must satisfy: \[ -1 \leq \frac{3x^2 + x - 1}{(x - 1)^2} \leq 1. \] #### Part A: Solve \( \frac{3x^2 + x - 1}{(x - 1)^2} \geq -1 \) This leads to: \[ 3x^2 + x - 1 + (x - 1)^2 \geq 0. \] Expanding \((x - 1)^2\): \[ 3x^2 + x - 1 + x^2 - 2x + 1 \geq 0, \] \[ 4x^2 - x \geq 0. \] Factoring gives: \[ x(4x - 1) \geq 0. \] The critical points are \(x = 0\) and \(x = \frac{1}{4}\). Testing intervals, we find: - For \(x < 0\): \(x(4x - 1) < 0\) - For \(0 < x < \frac{1}{4}\): \(x(4x - 1) < 0\) - For \(x > \frac{1}{4}\): \(x(4x - 1) > 0\) Thus, the solution for this inequality is: \[ x \in (-\infty, 0] \cup \left[\frac{1}{4}, \infty\right). \] #### Part B: Solve \( \frac{3x^2 + x - 1}{(x - 1)^2} \leq 1 \) This leads to: \[ 3x^2 + x - 1 - (x - 1)^2 \leq 0. \] Expanding gives: \[ 3x^2 + x - 1 - (x^2 - 2x + 1) \leq 0, \] \[ 2x^2 + 3x - 2 \leq 0. \] Factoring gives: \[ (2x + 1)(x - 2) \leq 0. \] The critical points are \(x = -\frac{1}{2}\) and \(x = 2\). Testing intervals, we find: - For \(x < -\frac{1}{2}\): \((2x + 1)(x - 2) > 0\) - For \(-\frac{1}{2} < x < 2\): \((2x + 1)(x - 2) < 0\) - For \(x > 2\): \((2x + 1)(x - 2) > 0\) Thus, the solution for this inequality is: \[ x \in \left[-\frac{1}{2}, 2\right]. \] ### Step 2: Combine the results Now, we need to find the intersection of the two sets: 1. From \(\sin^{-1}\): \(x \in (-\infty, 0] \cup \left[\frac{1}{4}, \infty\right)\) 2. From \(\cos^{-1}\): \(x \in \left[-\frac{1}{2}, 2\right]\) The intersection is: - From \((- \infty, 0]\) and \([- \frac{1}{2}, 2]\): \(x \in [-\frac{1}{2}, 0]\) - From \([\frac{1}{4}, \infty)\) and \([- \frac{1}{2}, 2]\): \(x \in [\frac{1}{4}, 2]\) Thus, the overall domain of \(f(x)\) is: \[ \text{Domain of } f(x) = [-\frac{1}{2}, 0] \cup [\frac{1}{4}, 2]. \] ### Final Answer The domain of \(f(x)\) is: \[ [-\frac{1}{2}, 0] \cup [\frac{1}{4}, 2]. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x) = sin^(-1)((3x^(2) + x-1)/((x-1)^(2))) + cos^(-1)((x-1)/(x+1)) is :

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

If f(x)=sqrt(4-x^(2))+(1)/(sqrt((|sin x|)-sin x)) then the domain of f(x) is

f(x)=(sin^(-1)x)^(2)*cos((1)/(x))ifx!=0;f(0)=0,f(x)

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D_(f), then The domain of f(x) is

The domain of f(x)=1+2(|x-1|)/(x)+x^(2)+cos^(-1)((1+[x])/(x))